Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2

Students can download 11th Business Maths Chapter 5 Differential Calculus Ex 5.2 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 5 Differential Calculus Ex 5.2

Samacheer Kalvi 11th Business Maths Differential Calculus Ex 5.2 Text Book Back Questions and Answers

Question 1.
Evaluate the following:
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q11
Solution:
(i) \(\lim _{x \rightarrow 2} \frac{x^{3}+2}{x+1}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1

(ii) \(\lim _{x \rightarrow \infty} \frac{2 x+5}{x^{2}+3 x+9}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.1
[Takeout x from numerator and take x2 from the denominator]
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.2

(iii) \(\lim _{x \rightarrow \infty} \frac{\Sigma n}{n^{2}}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.3

(iv) \(\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{5 x}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.4

(v) \(\lim _{x \rightarrow a} \frac{x^{\frac{5}{8}}-a^{\frac{5}{8}}}{x^{\frac{2}{3}}-a^{\frac{2}{3}}}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.5
[Divide both numerator and denominator by x – a; \(\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n}\)]
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.6

(vi) \(\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q1.7

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2

Question 2.
If \(\lim _{x \rightarrow a} \frac{x^{9}-a^{9}}{x-a}=\lim _{x \rightarrow 3}(x+6)\), find the value of a.
Solution:
\(\lim _{x \rightarrow a} \frac{x^{9}-a^{9}}{x-a}=\lim _{x \rightarrow 3}(x+6)\)
9 . a9-1 = 3 + 6
9 . a8 = 9
a8 = 1
Taking squareroot on bothsides, we get
\(\left(a^{8}\right)^{\frac{1}{2}}\) = ±1
a4 = ±1
But a4 = -1 is imposssible.
∴ a4 = 1
Again taking squareroot, we get
\(\left(a^{4}\right)^{\frac{1}{2}}\) = ±1
a2 = ±1
a2 = -1 is imposssible
∴ a2 = 1
Again taking positive squareroot, a = ±1

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2

Question 3.
If \(\lim _{x \rightarrow 2} \frac{x^{n}-2^{n}}{x-2}=448\), then find the least positive integer n.
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q3
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q3.1

Question 4.
If f(x) = \(\frac{x^{7}-128}{x^{5}-32}\), then find \(\lim _{x \rightarrow 2} f(x)\)
Solution:
\(\lim _{x \rightarrow 2} f(x)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q4

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2

Question 5.
Let f(x) = \(\frac{a x+b}{x+1}\), if \(\lim _{x \rightarrow 0} f(x)=2\) and \(\lim _{x \rightarrow \infty} f(x)=1\), then show that f(-2) = 0
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q5
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.2 Q5.1
Hence Proved.

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1

Students can download 11th Business Maths Chapter 5 Differential Calculus Ex 5.1 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 5 Differential Calculus Ex 5.1

Samacheer Kalvi 11th Business Maths Differential Calculus Ex 5.1 Text Book Back Questions and Answers

Question 1.
Determine whether the following functions are odd or even?
(i) f(x) = \(\left(\frac{a^{x}-1}{a^{x}+1}\right)\)
(ii) f(x) = log(x2 + \(\sqrt{x^{2}+1}\))
(iii) f(x) = sin x + cos x
(iv) f(x) = x2 – |x|
(v) f(x) = x + x2
Solution:
(i) f(x) = \(\left(\frac{a^{x}-1}{a^{x}+1}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q1
Thus f(-x) = -f(x)
∴ f(x) is an odd function.

(ii) f(x) = log(x2 + \(\sqrt{x^{2}+1}\))
f(-x) = log((-x)2 + \(\sqrt{(-x)^{2}+1}\))
= log(x2 + \(\sqrt{x^{2}+1}\))
Thus f(-x) = f(x)
∴ f(x) is an even function.

(iii) f(x) = sin x + cos x
f(-x) = sin(-x) + cos(-x)
= -sin x + cos x
= -[sin x – cos x]
Since f(-x) ≠ -f(x) (or) f(x) ≠ -f(x)
∴ f(x) is neither odd nor even function.

(iv) Given f(x) = x2 – |x|
f(-x) = (-x)2 – |-x|
= x2 – |x|
= f(x)
∴ f(x) is an even function.

(v) f(x) = x + x2
f(-x) = (-x) + (-x)2 = -x + x2
Since f(-x) ≠ f(x), f(-x) ≠ -f(x).
∴ f(x) is neither odd nor even function.

Question 2.
Let f be defined by f(x) = x3 – kx2 + 2x, x ∈ R. Find k, if ‘f’ is an odd function.
Solution:
For a polynomial function to be an odd function each term should have odd powers pf x. Therefore there should not be an even power of x term.
∴ k = 0.

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1

Question 3.
If f(x) = \(x^{3}-\frac{1}{x^{3}}\), then show that f(x) + f(\(\frac{1}{x}\)) = 0
Solution:
f(x) = \(x^{3}-\frac{1}{x^{3}}\) …….. (1)
\(f\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^{3}-\frac{1}{\left(\frac{1}{x}\right)^{3}}\) = \(\frac{1}{x^{3}}-x^{3}\) …….. (2)
(1) + (2) gives \(f(x)+f\left(\frac{1}{x}\right)=x^{3}-\frac{1}{x^{3}}+\frac{1}{x^{3}}-x^{3}=0\)
Hence Proved.

Question 4.
If f(x) = \(\frac{x+1}{x-1}\), then prove that f(f(x)) = x.
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q4
Hence proved.

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1

Question 5.
For f(x) = \(\frac{x-1}{3 x+1}\), write the expressions of f(\(\frac{1}{x}\)) and \(\frac{1}{f(x)}\).
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q5

Question 6.
If f(x) = ex and g(x) = loge x then find
(i) (f + g) (1)
(ii) (fg) (1)
(iii) (3f) (1)
(iv) (5g) (1)
Solution:
(i) (f+g) (1) = e1 + loge 1 = e + 0 = e
(ii) (fg) (1) = f(1) g(1) = e1 \(\log _{e}^{1}\) = e × 0 = 0
(iii) (3f) (1) = 3 f(1) = 3 e1 = 3e
(iv) (5g) (1) = 5 (g) (1) = 5 \(\log _{e}^{1}\) = 5 × 0 = 0

Question 7.
Draw the graph of the following functions:
(i) f(x) = 16 – x2
(ii) f(x) = |x – 2|
(iii) f(x) = x|x|
(iv) f(x) = e2x
(v) f(x) = e-2x
(vi) f(x) = \(\frac{|x|}{x}\)
Solution:
(i) f(x) = 16 – x2
Let y = f(x) = 16 – x2
Choose suitable values for x and determine y. Thus we get the following table.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7
Plot the points (-4, 0), (-3, 7), (-2, 12), (-1, 15), (0, 16), (1, 15), (2, 12), (3, 7), (4, 0).
The graph is as shown in the figure.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.1

(ii) Let y = f(x) = |x – 2|
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.11
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.2
Plot the points (2, 0), (3, 1) (4, 2), (5, 3), (0, 2), (-1, 3), (-2, 4), (-3, 5) and draw a line.
The graph is as shown in the figure.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.3

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1

(iii) Let y = f(x) = x|x|
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.4
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.5
Plot the points (0, 0), (1, 1) (2, 4), (3, 9), (-1, -1), (-2, -4), (-3, -9) and draw a smooth curve.
The graph is as shown in the figure.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.6

(iv) For x = 0, f(x) becomes 1 i.e., the curve cuts the y-axis at y = 1.
For no real value of x, f(x) equals to 0. Thus it does not meet the x-axis for real values of x.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.7

(v) For x = 0, f(x) becomes 1 i.e., the curve cuts the y-axis at y = 1.
For no real value of x, f(x) equal to 0. Thus it does not meet the x-axis for real values of x.
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.8

Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1

(vi) If f: R → R is defined by
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.9
Samacheer Kalvi 11th Business Maths Guide Chapter 5 Differential Calculus Ex 5.1 Q7.10
The domain of the function is R and the range is {-1, 0, 1}.

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.5 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.5

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.5 Text Book Back Questions and Answers

Question 1.
The degree measure of \(\frac{\pi}{8}\) is:
(a) 20°60′
(b) 22°30′
(c) 22°60′
(d) 20°30′
Answer:
(b) 22°30′
Hint:
We know that, one radian = \(\frac{180^{\circ}}{\pi}\)
∴ \(\frac{\pi}{8}=\frac{180^{\circ}}{\pi} \times \frac{\pi}{8}\) degrees
= \(\frac{45^{\circ}}{2}\)
= 22.5°
= 22°30′

Question 2.
The radian measure of 37°30′ is:
(a) \(\frac{5 \pi}{24}\)
(b) \(\frac{3 \pi}{24}\)
(c) \(\frac{7 \pi}{24}\)
(d) \(\frac{9 \pi}{24}\)
Answer:
(a) \(\frac{5 \pi}{24}\)
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q2

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 3.
If tan θ = \(\frac{1}{\sqrt{5}}\) and θ lies in the first quadrant then cos θ is:
(a) \(\frac{1}{\sqrt{6}}\)
(b) \(\frac{-1}{\sqrt{6}}\)
(c) \(\frac{\sqrt{5}}{\sqrt{6}}\)
(d) \(\frac{-\sqrt{5}}{\sqrt{6}}\)
Answer:
(c) \(\frac{\sqrt{5}}{\sqrt{6}}\)
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q3
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q3.1

Question 4.
The value of sin 15° is:
(a) \(\frac{\sqrt{3}+1}{2 \sqrt{2}}\)
(b) \(\frac{\sqrt{3}-1}{2 \sqrt{2}}\)
(c) \(\frac{\sqrt{3}}{\sqrt{2}}\)
(d) \(\frac{\sqrt{3}}{2 \sqrt{2}}\)
Answer:
(b) \(\frac{\sqrt{3}-1}{2 \sqrt{2}}\)
Hint:
sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
= \(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2}\)
= \(\frac{\sqrt{3}-1}{2 \sqrt{2}}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 5.
The value of sin(-420°)
(a) \(\frac{\sqrt{3}}{2}\)
(b) \(-\frac{\sqrt{3}}{2}\)
(c) \(\frac{1}{2}\)
(d) \(\frac{-1}{2}\)
Answer:
(b) \(-\frac{\sqrt{3}}{2}\)
Hint:
sin(-420°) = -sin(420°) [∵ sin(-θ) = -sin θ]
= -sin(360° + 60°)
= -sin 60°
= \(-\frac{\sqrt{3}}{2}\)

Question 6.
The value of cos(-480°) is:
(a) √3
(b) \(-\frac{\sqrt{3}}{2}\)
(c) \(\frac{1}{2}\)
(d) \(\frac{-1}{2}\)
Answer:
(d) \(\frac{-1}{2}\)
Hint:
cos(-480°) = cos 480° [∵ cos(-θ) = cos θ]
= cos(360° + 120°)
= cos 120°
= cos(180° – 60°)
= -cos 60°
= \(\frac{-1}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 7.
The value of sin 28° cos 17° + cos 28° sin 17°
(a) \(\frac{1}{\sqrt{2}}\)
(b) 1
(c) \(\frac{-1}{\sqrt{2}}\)
(d) 0
Answer:
(a) \(\frac{1}{\sqrt{2}}\)
Hint:
sin 28° cos 17° + cos 28° sin 17° = sin(28° + 17°)
This is of the form sin(A + B), A = 28°, B = 17°
= sin 45°
= \(\frac{1}{\sqrt{2}}\)

Question 8.
The value of sin 15° cos 15° is:
(a) 1
(b) \(\frac{1}{2}\)
(c) \(\frac{\sqrt{3}}{2}\)
(d) \(\frac{1}{4}\)
Answer:
(d) \(\frac{1}{4}\)
Hint:
sin 15° cos 15° = \(\frac{1}{2}\) (2 sin 15° cos 15°)
= \(\frac{1}{2}\) (sin 30°)
= \(\frac{1}{2}\left(\frac{1}{2}\right)\)
= \(\frac{1}{4}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 9.
The value of sec A sin(270° + A) is:
(a) -1
(b) cos2 A
(c) sec2 A
(d) 1
Answer:
(a) -1
Hint:
sec A (sin(270° + A)) = \(\frac{1}{\cos A}\) (-cos A) = -1

Question 10.
If sin A + cos A = 1 then sin 2A is equal to:
(a) 1
(b) 2
(c) 0
(d) \(\frac{1}{2}\)
Answer:
(c) 0
Hint:
Given sin A + cos A = 1
Squaring both sides we get
sin2 A + cos2 A + 2 sin A cos A = 1
1 + sin 2A = 1
sin 2A = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 11.
The value of cos2 45° – sin2 45° is:
(a) \(\frac{\sqrt{3}}{2}\)
(b) \(\frac{1}{2}\)
(c) 0
(d) \(\frac{1}{\sqrt{2}}\)
Answer:
(c) 0
Hint:
cos2 45° – sin2 45°
= cos 2 × 45° (∵ cos2 A – sin2 A = cos 2A)
= cos 90°
= 0

Question 12.
The value of 1 – 2 sin2 45° is:
(a) 1
(b) \(\frac{1}{2}\)
(c) \(\frac{1}{4}\)
(d) 0
Answer:
(d) 0
Hint:
1 – 2 sin2 45°
= cos(2 × 45°) [∵ cos 2A = 1 – 2 sin2 A]
= cos 90°
= 0

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 13.
The value of 4 cos3 40° – 3 cos 40° is
(a) \(\frac{\sqrt{3}}{2}\)
(b) \(-\frac{1}{2}\)
(c) \(\frac{1}{2}\)
(d) \(\frac{1}{\sqrt{2}}\)
Answer:
(b) \(-\frac{1}{2}\)
Hint:
4 cos3 40° – 3 cos 40°
= cos (3 × 40°) [∵ cos 3A = 4 cos3 A – 3 cos A]
= cos 120°
= cos (180° – 60°)
= -cos 60°
= \(-\frac{1}{2}\)

Question 14.
The value of \(\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}\) is:
(a) \(\frac{1}{2}\)
(b) \(\frac{1}{\sqrt{3}}\)
(c) \(\frac{\sqrt{3}}{2}\)
(d) √3
Answer:
(d) √3
Hint:
We know that sin 2A = \(\frac{2 \tan A}{1+\tan ^{2} A}\)
\(\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}\) = sin(2 × 30°) = sin 60° = \(\frac{\sqrt{3}}{2}\)
= tan 2A
= tan 60°
= √3

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 15.
If sin A = \(\frac{1}{2}\) then 4 cos3 A – 3 cos A is:
(a) 1
(b) 0
(c) \(\frac{\sqrt{3}}{2}\)
(d) \(\frac{1}{\sqrt{2}}\)
Answer:
(b) 0
Hint:
Given sin A = \(\frac{1}{2}\)
sin A = sin 30°
∴ A = 30°
[∵ 4 cos3 A – 3 cos A = cos 3A]
= cos(3 × 30°)
= cos 90°
= 0

Question 16.
The value of \(\frac{3 \tan 10^{\circ}-\tan ^{3} 10^{\circ}}{1-3 \tan ^{2} 10^{\circ}}\) is:
(a) \(\frac{1}{\sqrt{3}}\)
(b) \(\frac{1}{2}\)
(c) \(\frac{\sqrt{3}}{2}\)
(d) \(\frac{1}{\sqrt{2}}\)
Answer:
(a) \(\frac{1}{\sqrt{3}}\)
Hint:
\(\frac{3 \tan 10^{\circ}-\tan ^{3} 10^{\circ}}{1-3 \tan ^{2} 10^{\circ}}\) = tan(3 × 10°) [∵ tan 3A = \(\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}\)]
= tan 30°
= \(\frac{1}{\sqrt{3}}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 17.
The value of cosec-1 (\(\frac{2}{\sqrt{3}}\)) is:
(a) \(\frac{\pi}{4}\)
(b) \(\frac{\pi}{2}\)
(c) \(\frac{\pi}{3}\)
(d) \(\frac{\pi}{6}\)
Answer:
(c) \(\frac{\pi}{3}\)
Hint:
Let cosec-1 (\(\frac{2}{\sqrt{3}}\))
\(\frac{2}{\sqrt{3}}\) = cosec A
cosec A = \(\frac{2}{\sqrt{3}}\)
sin A = \(\frac{\sqrt{3}}{2}\) = sin 60°
∴ A = 60° = \(\frac{\pi}{3}\)

Question 18.
sec-1 (\(\frac{2}{3}\)) + cosec-1 (\(\frac{2}{3}\)) =
(a) \(\frac{-\pi}{2}\)
(b) \(\frac{\pi}{2}\)
(c) π
(d) -π
Answer:
(b) \(\frac{\pi}{2}\)
Hint:
We know that sec-1 x + cosec-1 x = \(\frac{\pi}{2}\)
∴ sec-1 (\(\frac{2}{3}\)) + cosec-1 (\(\frac{2}{3}\)) = \(\frac{\pi}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 19.
If α and β be between 0 and \(\frac{\pi}{2}\) and if cos(α + β) = \(\frac{12}{13}\) and sin(α – β) = \(\frac{3}{5}\) then sin 2α is:
(a) \(\frac{16}{15}\)
(b) 0
(c) \(\frac{56}{65}\)
(d) \(\frac{64}{65}\)
Answer:
(c) \(\frac{56}{65}\)
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q19
Given that cos(α + β) = \(\frac{12}{13}\)
∴ sin(α + β) = \(\frac{5}{13}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q19.1
Also given that sin(α – β) = \(\frac{3}{5}\)
∴ cos(α – β) = \(\frac{4}{5}\)
sin 2α = sin[(α + β) + (α – β)]
= sin(α + β) cos(α – β) + cos(α + β) sin(α – β)
= \(\frac{5}{13} \times \frac{4}{5}+\frac{12}{13} \times \frac{3}{5}\)
= \(\frac{20}{65}+\frac{36}{65}\)
= \(\frac{56}{65}\)

Question 20.
If tan A = \(\frac{1}{2}\) and tan B = \(\frac{1}{3}\) then tan(2A + B) is equal to:
(a) 1
(b) 2
(c) 3
(d) 4
Answer:
(c) 3
Hint:
Given tan A = \(\frac{1}{2}\), tan B = \(\frac{1}{3}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q20

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 21.
tan(\(\frac{\pi}{4}\) – x) is:
(a) \(\left(\frac{1+\tan x}{1-\tan x}\right)\)
(b) \(\left(\frac{1-\tan x}{1+\tan x}\right)\)
(c) 1 – tan x
(d) 1 + tan x
Answer:
(b) \(\left(\frac{1-\tan x}{1+\tan x}\right)\)
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q21
[∵ tan \(\frac{\pi}{4}\) = 1]

Question 22.
\(\sin \left(\cos ^{-1} \frac{3}{5}\right)\) is:
(a) \(\frac{3}{5}\)
(b) \(\frac{5}{3}\)
(c) \(\frac{4}{5}\)
(d) \(\frac{5}{4}\)
Answer:
(c) \(\frac{4}{5}\)
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5 Q22
Let cos-1 (\(\frac{3}{5}\)) = A
\(\frac{3}{5}\) = cos A
sin A = \(\frac{4}{5}\)
Now sin(cos-1 (\(\frac{3}{5}\))) = sin A = \(\frac{4}{5}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 23.
The value of \(\frac{1}{cosec(-45^{\circ})}\) is:
(a) \(\frac{-1}{\sqrt{2}}\)
(b) \(\frac{1}{\sqrt{2}}\)
(c) √2
(d) -√2
Answer:
(a) \(\frac{-1}{\sqrt{2}}\)
Hint:
\(\frac{1}{cosec(-45^{\circ})}\) = sin(-45°)
= -sin 45°
= \(\frac{-1}{\sqrt{2}}\)

Question 24.
If p sec 50° = tan 50° then p is:
(a) cos 50°
(b) sin 50°
(c) tan 50°
(d) sec 50°
Answer:
(b) sin 50°
Hint:
p sec 50° = tan 50°
p(\(\frac{1}{\cos 50^{\circ}}\)) = \(\frac{\sin 50^{\circ}}{\cos 50^{\circ}}\)
∴ p = sin 50°

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.5

Question 25.
(\(\frac{cos x}{cosec x})-\sqrt{1-\sin ^{2} x} \sqrt{1-\cos ^{2} x}\) is:
(a) cos2 x – sin2 x
(b) sin2 x – cos2 x
(c) 1
(d) 0
Answer:
(d) 0
Hint:
(\(\frac{cos x}{cosec x})-\sqrt{1-\sin ^{2} x} \sqrt{1-\cos ^{2} x}\)
= cos x × sin x – \(\sqrt{\cos ^{2} x} \sqrt{\sin ^{2} x}\)
= cos x × sin x – cos x × sin x
= 0

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.4 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.4

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.4 Text Book Back Questions and Answers

Question 1.
Find the principal value of the following:
(i) sin-1 (\(-\frac{1}{2}\))
(ii) tan-1 (-1)
(iii) cosec-1 (2)
(iv) sec-1 (-√2)
Solution:
(i) sin-1 (\(-\frac{1}{2}\))
Let sin-1 (\(-\frac{1}{2}\)) = y
[where \(\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}\)]
\(-\frac{1}{2}\) = sin y
sin y = \(-\frac{1}{2}\) (∵ \(\sin \frac{\pi}{6}=\frac{1}{2}\))
sin y = sin(\(-\frac{\pi}{6}\)) [∵ \(\sin \left(-\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)\)]
∴ y = \(-\frac{\pi}{6}\)
∴ The principal value of sin-1 (\(-\frac{1}{2}\)) is \(-\frac{\pi}{6}\)

(ii) tan-1 (-1) = y
(-1) = tan y where \(\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}\)
(or) tan y = – 1
tan y = tan(\(-\frac{\pi}{4}\)) (∵ \(\tan \frac{\pi}{4}\) = 1)
∴ y = \(-\frac{\pi}{4}\) [∵ \(\tan \left(-\frac{\pi}{4}\right)=-\tan \left(\frac{\pi}{4}\right)=-1\)]
∴ The principal value of tan-1 (-1) is \(-\frac{\pi}{4}\).

(iii) Let cosec-1 (2) = y
2 = cosec y
(or) cosec y = 2
⇒ \(\frac{1}{\sin y}\) = 2
⇒ sin y = \(\frac{1}{2}\) (Take reciprocal)
⇒ sin y = \(\sin \left(\frac{\pi}{6}\right)\)
⇒ y = \(\frac{\pi}{6}\)
The principal value of cosec-1 (-1) is \(\frac{\pi}{6}\).

(iv) Let sec-1 (-√2 ) = y
-√2 = sec y
sec y = -√2
\(\frac{1}{\cos y}\) = -√2
Taking reciprocal cos y = \(\frac{-1}{\sqrt{2}}\) [where 0 ≤ y ≤ π]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q1
∴ The principal value of sec-1 (-√2) is \(\frac{3 \pi}{4}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 2.
Prove that
(i) 2 tan-1 (x) = \(\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\)
(ii) \(\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}\)
Solution:
(i) Let tan-1 x = θ
x = tan θ
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q2

(ii) \(\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q2.1

Question 3.
Show that \(\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)=\tan ^{-1}\left(\frac{3}{4}\right)\)
Solution:
We know that tan-1 x + tan-1 y = \(\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)
Now LHS = \(\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q3

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 4.
Solve: tan-1 2x + tan-1 3x = \(\frac{\pi}{4}\).
Solution:
Given tan-1 (2x) + tan-1 (3x) = \(\frac{\pi}{4}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q4
⇒ 5x = 1(1 – 6x2)
⇒ 6x2 + 5x – 1 = 0
⇒ (x + 1) (6x – 1) = 0
⇒ x + 1 = 0 (or) 6x – 1 = 0
⇒ x = -1 (or) x = \(\frac{1}{6}\)
x = -1 is rejected. It doesn’t satisfies the question.
Note: Put x = -1 in the given question.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q4.1
So the question changes.

Question 5.
Solve: tan-1 (x + 1) + tan-1 (x – 1) = \(\tan ^{-1}\left(\frac{4}{7}\right)\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q5
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q5.1
⇒ 7x = 2(2 – x2)
⇒ 7x = 4 – 2x2
⇒ 2x2 + 7x – 4 = 0
⇒ (x + 4) (2x – 1) = 0
⇒ x + 4 = 0 (or) 2x – 1 = 0
⇒ x = -4 (or) x = \(\frac{1}{2}\)
x = -4 is rejected, since does not satisfies the question.
∴ x = \(\frac{1}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 6.
Evaluate
(i) cos[tan-1(\(\frac{3}{4}\))]
(ii) \(\sin \left[\frac{1}{2} \cos ^{-1}\left(\frac{4}{5}\right)\right]\)
Solution:
(i) Let \(\tan ^{-1}\left(\frac{3}{4}\right)\) = θ
\(\frac{3}{4}\) = tan θ
tan θ = \(\frac{3}{4}\)
∴ cos θ = \(\frac{4}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6
Now \(\cos \left(\tan ^{-1} \frac{3}{4}\right)\) = cos θ = \(\frac{4}{5}\)

(ii) Let \(\cos ^{-1}\left(\frac{4}{5}\right)\) = A
Then \(\frac{4}{5}\) = cos A
cos A = \(\frac{4}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6.1
We know that
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6.2

Question 7.
Evaluate: \(\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q7
Let \(\sin ^{-1}\left(\frac{4}{5}\right)\) = A
sin A = \(\frac{4}{5}\)
∴ cos A = \(\frac{3}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q7.1
Let \(\sin ^{-1}\left(\frac{12}{13}\right)\) = B
\(\frac{12}{13}\) = sin B
sin B = \(\frac{12}{13}\)
∴ cos B = \(\frac{5}{13}\)
Now \(\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\) = cos (A + B)
= cos A cos B – sin A sin B
= \(\frac{3}{5} \times \frac{5}{13}-\frac{4}{5} \times \frac{12}{13}\)
= \(\frac{15}{65}-\frac{48}{65}\)
= \(-\frac{33}{65}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 8.
Prove that \(\tan ^{-1}\left(\frac{m}{n}\right)-\tan ^{-1}\left(\frac{m-n}{m+n}\right)=\frac{\pi}{4}\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q8

Question 9.
Show that \(\sin ^{-1}\left(-\frac{3}{5}\right)-\sin ^{-1}\left(-\frac{8}{17}\right)=\cos ^{-1}\left(\frac{84}{85}\right)\)
Solution:
\(\sin ^{-1}\left(-\frac{3}{5}\right)-\sin ^{-1}\left(-\frac{8}{17}\right)=-\sin ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{8}{17}\right)\)
= \(\sin ^{-1}\left(\frac{8}{17}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9
Let \(\sin ^{-1}\left(\frac{8}{17}\right)\) = A
\(\frac{8}{17}\) = sin A
sin A = \(\frac{8}{17}\)
∴ cos A = \(\frac{15}{17}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9.1
Let \(\sin ^{-1}\left(\frac{3}{5}\right)\) = B
sin B = \(\frac{3}{5}\)
∴ cos B = \(\frac{4}{5}\)
Consider cos(A – B) = cos A cos B + sin A sin B
= \(\frac{15}{17} \times \frac{4}{5}+\frac{8}{17} \times \frac{3}{5}\)
= \(\frac{60}{85}+\frac{24}{85}\)
cos (A – B) = \(\frac{84}{85}\)
∴ A – B = \(\cos ^{-1}\left(\frac{84}{85}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9.2

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 10.
Express \(\tan ^{-1}\left[\frac{\cos x}{1-\sin x}\right]\), \(-\frac{\pi}{2}<x<\frac{3 \pi}{2}\) in the simplest form.
Solution:
\(\tan ^{-1}\left[\frac{\cos x}{1-\sin x}\right]\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.1
[∵ a2 – b2 = (a + b) (a – b)]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.2
[∵ Divide each term by cos \(\frac{x}{2}\)]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.3

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.3 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.3

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.3 Text Book Back Questions and Answers

Question 1.
Express each of the following as the sum or difference of sine or cosine:
(i) sin\(\frac{A}{8}\) sin\(\frac{3A}{8}\)
(ii) cos(60° + A) sin(120° + A)
(iii) cos\(\frac{7 A}{3}\) sin\(\frac{5 A}{3}\)
(iv) cos 7θ sin 3θ
Solution:
(i) sin\(\frac{A}{8}\) sin\(\frac{3A}{8}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 1
[∵ 2 sin A sin B = cos(A – B) – cos(A + B)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 2
[∵ cos(-θ) = cos θ]

(ii) cos(60° + A) sin(120° + A) = \(\frac{1}{2}\) [2 cos(60° + A) sin(120° + A)] [Multiply and divide by 2]
= \(\frac{1}{2}\) [sin((60° + A) + (120° + A))] – sin((60° + A) – (120° + A))]
[∵ 2 cos A sin B = sin(A + B) – sin(A – B)]
= \(\frac{1}{2}\) [sin(180° + 2A) – sin(60° + A – 120° – A)]
= \(\frac{1}{2}\) [(-sin 2A) – sin(-60°)]
= \(\frac{1}{2}\) [-sin 2A + sin 60°]
= \(\frac{1}{2}\) [-sin 2A + \(\frac{\sqrt{3}}{2}\)]

(iii) cos\(\frac{7 A}{3}\) sin\(\frac{5 A}{3}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 3

(iv) cos 7θ sin 3θ = \(\frac{1}{2}\) [sin(7θ + 3θ) – sin(7θ – 3θ)]
= \(\frac{1}{2}\) (sin 10θ – sin 4θ)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 2.
Express each of the following as the product of sine and cosine
(i) sin A + sin 2A
(ii) cos 2A + cos 4A
(iii) sin 6θ – sin 2θ
(iv) cos 2θ – cos θ
Solution:
(i) sin A + sin 2A = 2 sin(\(\frac{A+2 A}{2}\)) cos(\(\frac{A-2 A}{2}\))
[∵ sin C + sin D = sin(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))]
= 2 sin \(\frac{3A}{2}\) cos \(\frac{A}{2}\) [∵ cos(-θ) = cos θ]

(ii) cos 2A + cos 4A = 2 cos(\(\frac{2 \mathrm{A}+4 \mathrm{A}}{2}\)) cos(\(\frac{2 \mathrm{A}-4 \mathrm{A}}{2}\))
[∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))
= 2 cos(\(\frac{6 \mathrm{A}}{2}\)) cos(\(\frac{6 \mathrm{-2A}}{2}\))
= 2 cos(3A) cos (-A) [∵ cos(-θ) = cos θ]
= 2 cos 3A cos A

(iii) sin 6θ – sin 2θ = 2 cos(\(\frac{6 \theta+2 \theta}{2}\)) cos(\(\frac{6 \theta-2 \theta}{2}\))
[∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))
= 2 cos(\(\frac{8 \theta}{2}\)) sin(\(\frac{4 \theta}{2}\))
= 2 cos 4θ sin 2θ

(iv) cos 2θ – cos θ = -2 sin(\(\frac{2 \theta+\theta}{2}\)) sin(\(\frac{2 \theta-\theta}{2}\))
[∵ cos C – cos D = -2 sin(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))
= -2 sin(\(\frac{3 \theta}{2}\)) sin(\(\frac{\theta}{2}\))

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 3.
Prove that
(i) cos 20° cos 40° cos 80° = \(\frac{1}{8}\)
(ii) tan 20° tan 40° tan 80° = √3.
Solution:
(i) cos 20° cos 40° cos 80° = \(\left(\frac{2 \sin 20^{\circ}}{2 \sin 20^{\circ}}\right)\) cos 20° cos 40° cos 80°
[multiply and divide by 2 sin 20°]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 4
(Multiply and divide by 2)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 5
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 6
[∵ sin(180° – θ) = sin θ]

(ii) tan 20° tan 40° tan 80°
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 7
Consider sin 20° × sin 40° sin 80°
= sin 20° sin (60° – 20°) sin (60° + 20°)
= sin 20° [sin2 60° – sin2 20°]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 8
cos 20° × cos 40° cos 80° = \(\frac{1}{8}\) [∵ from (i)] …… (2)
divide (1) by (2) we get, tan 20° tan 40° tan 80° = \(\frac{\frac{\sqrt{3}}{8}}{\frac{1}{8}}\) = √3

Question 4.
Prove that
(i) (cos α – cos β)2 + (sin α – sin β)2 = 4 \(\sin ^{2}\left(\frac{\alpha-\beta}{2}\right)\)
(ii) sin A sin(60° + A) sin(60° – A) = sin 3A
Solution:
(i) LHS = (cos α – cos β)2 + (sin α – sin β)2
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 9

(ii) LHS = 4 sin A sin (60° + A) . sin (60° – A)
= 4 sin A {sin (60° + A) . sin (60° – A)}
= 4 sin A {sin2 60° – sin2 A}
= 4 sin A {\(\frac{3}{4}\) – sin2 A}
= 3 sin A – 4 sin3 A
= sin 3A
= RHS

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 5.
Prove that
(i) sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
(ii) \(2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0\)
Solution:
Consider sin (A – B) sin C
= (sin A cos B – cos A sin B) sin C
= sin A cos B sin C – cos A sin B sin C …….. (1)
Similarly sin(B – C) sin A = sin B cos C sin A – cos B sin C sin A …….. (2)
[Replace A by B, B by C, C by A in (1)]
and sin(C – A) sin B [Replace A by B, B by C, C by A in (2)]
= sin C cos A sin B – cos C sin A sin B …….. (3)
Adding (1), (2) and (3) we get
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0

(ii) \(2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 10
[∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 11
[∵ cos(-θ) = cos θ]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 12
[take 2 cos \(\frac{\pi}{3}\) as commom)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 13
Hence proved.

Question 6.
Prove that
(i) \(\frac{\cos 2 A-\cos 3 A}{\sin 2 A+\sin 3 A}=\tan \frac{A}{2}\)
(ii) \(\frac{\cos 7 \mathbf{A}+\cos 5 \mathbf{A}}{\sin 7 \mathbf{A}-\sin 5 \mathbf{A}}=\cot \mathbf{A}\)
Solution:
(i) \(\frac{\cos 2 A-\cos 3 A}{\sin 2 A+\sin 3 A}=\tan \frac{A}{2}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 14

(ii) \(\frac{\cos 7 \mathbf{A}+\cos 5 \mathbf{A}}{\sin 7 \mathbf{A}-\sin 5 \mathbf{A}}=\cot \mathbf{A}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 15
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 16
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 17
Hence proved.

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 7.
Prove that cos 20° cos 40° cos 60° cos 80° = \(\frac{3}{16}\).
Solution:
LHS = cos 20° cos 40° cos 60° cos 80°
= cos 20° cos 40° (\(\frac{1}{2}\)) cos 80° [∵ cos 60° = \(\frac{1}{2}\)]
= \(\frac{1}{2}\) (cos 20° cos 40° cos 80°)
= \(\frac{1}{2}\left(\frac{2 \sin 20^{\circ}}{2 \sin 20^{\circ}}\right)\) (cos 20° cos 40° cos 80°)
[multiply and divide by 2 sin 20°]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 18
[multiply and divide by 2]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 19
Hence Proved.

Question 8.
Evaluate:
(i) cos 20° + cos 100° + cos 140°
(ii) sin 50° – sin 70° + sin 10°
Solution:
(i) LHS = (cos 20° + cos 100°) + cos 140°
= 2 \(\cos \left(\frac{20^{\circ}+100^{\circ}}{2}\right) \cos \left(\frac{20^{\circ}-100^{\circ}}{2}\right)\) + cos 140°
[∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))]
= 2 cos 60° cos(-40°) + cos 140°
= 2 × \(\frac{1}{2}\) × cos(-40°) + cos(180° – 140°)
[∵ cos(-θ) = cos θ, cos 60° = \(\frac{1}{2}\)
= cos 40° – cos 40°
= 0
Hence Proved.

(ii) LHS = (sin 50° – sin 70°) + sin 10°
= 2 \(\cos \left(\frac{50^{\circ}+70^{\circ}}{2}\right) \sin \left(\frac{50^{\circ}-70^{\circ}}{2}\right)\) + sin 10°
[∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))]
= 2 cos 60° sin(-10°) + sin 10°
= 2 × \(\frac{1}{2}\) (-sin 10°) + sin 10° [∵ sin(-θ) = -sin θ]
= -sin 10° + sin 10°
= 0
= RHS

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 9.
If cos A + cos B = \(\frac{1}{2}\) and sin A + sin B = \(\frac{1}{4}\), prove that \(\tan \left(\frac{\mathbf{A}+\mathbf{B}}{2}\right)=\frac{\mathbf{1}}{2}\)
Solution:
Given that cos A + cos B = \(\frac{1}{2}\)
\(2 \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{1}{2}\) …….. (1)
Also given that sin A + sin B = \(\frac{1}{4}\)
\(2 \sin \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{1}{4}\) ……. (2)
\(\frac{(2)}{(1)}\) gives
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 20

Question 10.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
Solution:
In A.P. commom difference are equal, namely t2 – t1 = t3 – t2
sin(z + x – y) – sin(y + z – x) = sin(x + y – z) – sin(z + x – y)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 21
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 22
cos z sin (x – y) = cos x sin (y – z)
cos z (sin x cos y – cos x sin y) = cos x (sin y cos z – cos y sin z)
Divide bothsides by cos x cos y cos z we get
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 23
tan x – tan y = tan y – tan z
Multiply both sides by (-1) we get,
tan y – tan x = tan z – tan y
This means tan x, tan y, and tan z are in A.P.
Hence proved.

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3

Question 11.
If cosec A + sec A = cosec B + sec B prove that cot(\(\frac{A+B}{2}\)) = tan A tan B.
Solution:
Given that cosec A + sec A = cosec B + sec B
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 24
Arrange T-ratios of the sine and cosine in the separate side
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 25
[∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 26
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.3 27

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.2 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.2

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.2 Text Book Back Questions and Answers

Question 1.
Find the values of the following:
(i) cosec 15°
(ii) sin (-105°)
(iii) cot 75°
Solution:
(i) cosec 15° = \(\frac{1}{\sin 15^{\circ}}\)
Consider sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 1
cosec 15° = \(\frac{1}{\sin 15^{\circ}}\) = \(\frac{2 \sqrt{2}}{\sqrt{3}-1}\)

(ii) sin (-105°) = -sin (105°) (∵ sin (-θ) = – sin θ)
= -[sin(60° + 45°)]
= -[sin 60° cos 45° + cos 60° sin 45°]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 2

(iii) cot 75° = \(\frac{1}{\tan 75^{\circ}}\)
Consider tan 75° = tan (30° + 45°)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 3
cot 75° = \(\frac{1}{\tan 75^{\circ}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 2.
Find the values of the following:
(i) sin 76° cos 16° – cos 76° sin 16°
(ii) \(\sin \frac{\pi}{4} \cos \frac{\pi}{12}+\cos \frac{\pi}{4} \sin \frac{\pi}{12}\)
(iii) cos 70° cos 10° – sin 70° sin 10°
(iv) cos2 15° – sin2 15°
Solution:
(i) Given that, sin 76° cos 16° – cos 76° sin 16° (∴ This is of the form sin(A – B))
= sin(76° – 16°)
= sin 60°
= \(\frac{\sqrt{3}}{2}\)

(ii) This is of the form sin(A + B) = \(\sin \left(\frac{\pi}{4}+\frac{\pi}{12}\right)\)
= \(\sin \left(\frac{3 \pi+\pi}{12}\right)\)
= \(\sin \frac{4 \pi}{12}\)
= \(\sin \frac{\pi}{3}\)
= \(\frac{\sqrt{3}}{2}\) (∵ sin 60° = \(\frac{\sqrt{3}}{2}\))

(iii) Given that cos 70° cos 10° – sin 70° sin 10°
(This is of the form of cos (A + B), A = 70°, B = 10°)
= cos (70° + 10°)
= cos 80°

(iv) cos2 15° – sin2 15°
[∵ cos 2A = cos2 A – sin2 A, Here A = 15°]
= cos (2 × 15°)
= cos 30°
= \(\frac{\sqrt{3}}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 3.
If sin A = \(\frac{3}{5}\), 0 < A < \(\frac{\pi}{2}\) and cos B = \(\frac{-12}{13}\), π < B < \(\frac{3 \pi}{2}\), find the values of the following:
(i) cos(A + B)
(ii) sin(A – B)
(iii) tan(A – B)
Solution:
Given that sin A = \(\frac{3}{5}\), 0 < A < \(\frac{\pi}{2}\) (i.e., A lies in first quadrant)
Since A lies in first quadrant cos A is positive.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 4
cos A = \(\frac{\text { Adjacent side }}{\text { Hypotenuse }}=\frac{4}{5}\)
tan A = \(\frac{3}{4}\)
AB = \(\sqrt{5^{2}-3^{2}}\) = 4
Also given that cos B = \(\frac{-12}{13}\), π < B < \(\frac{3 \pi}{2}\) (i.e., B lies in third quadrant)
Now sin B lies in third quadrant. sin B is negative.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 5
CA = \(\sqrt{13^{2}-12^{2}}\) = 5
sin B = \(\frac{-\text { Opposite side }}{\text { Hypotenuse }}=\frac{-5}{13}\)
tan B = \(\frac{-\text { Opposite side }}{\text { Adjacent }}=\frac{5}{12}\) [B lies in 3rd quadrant. tan B is positive.]
(i) cos(A + B) = cos A cos B – sin A sin B
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 6

(ii) sin(A – B) = sin A cos B – cos A sin B
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 7

(iii) tan(A – B)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 8

Question 4.
If cos A = \(\frac{13}{14}\) and cos B = \(\frac{1}{7}\) where A, B are acute angles prove that A – B = \(\frac{\pi}{3}\)
Solution:
cos A = \(\frac{13}{14}\), cos B = \(\frac{1}{7}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 9
cos(A – B) = cos A cos B + sin A sin B
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 33
cos(A – B) = cos 60°
A – B = 60° = \(\frac{\pi}{3}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 5.
Prove that 2 tan 80° = tan 85° – tan 5°.
Solution:
Consider tan 80° = tan(85° – 5°)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 10
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 11
∴ 2 tan 80° = tan 85° – tan 5°
Hence Proved.

Question 6.
If cot α = \(\frac{1}{2}\), sec β = \(\frac{-5}{3}\), where π < α < \(\frac{3 \pi}{2}\) and \(\frac{\pi}{2}\) < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Solution:
Given that cot α = \(\frac{1}{2}\) where π < α < \(\frac{3 \pi}{2}\) (i.e,. α lies in third quadrant)
tan α = \(\frac{1}{\frac{1}{2}}\) = 2 [∵ In 3rd quadrant tan α is positive]
Also given that sec β = \(\frac{-5}{3}\) where \(\frac{\pi}{2}\) < β < π (i.e., β lies in second quadrant cos β and tan β are negative)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 12
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 13
tan (α + β) = \(\frac{2}{11}\) which is positive.
α + β terminates in first quandrant.

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 7.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22\(\frac{1}{2}\).
Solution:
Given A + B = 45°
tan (A + B) = tan 45°
\(\frac{\tan A+\tan B}{1-\tan A \tan B}=1\)
tan A + tan B = 1 – tan A . tan B
tan A + tan B + tan A tan B = 1
Add 1 on both sides we get,
(1 + tan A) + tan B + tan A tan B = 2
1(1+ tan A) + tan B (1 + tan A) = 2
(1 + tan A) (1 + tan B) = 2 ……. (1)
Put A = B = 22\(\frac{1}{2}\) in (1) we get
(1 + tan 22\(\frac{1}{2}\)) (1 + tan 22\(\frac{1}{2}\)) = 2
⇒ (1 + tan22\(\frac{1}{2}\))2 = 2
⇒ 1 + tan 22\(\frac{1}{2}\) = ±√2
⇒ tan 22\(\frac{1}{2}\) = ±√2 – 1
Since 22\(\frac{1}{2}\) is acute, tan 22\(\frac{1}{2}\) is positive and therefore tan 22\(\frac{1}{2}\) = √2 – 1

Question 8.
Prove that
(i) sin(A + 60°) + sin(A – 60°) = sin A.
(ii) tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
Solution:
(i) LHS = sin (A + 60°) + sin (A – 60°)
= sin A cos 60° + cos A sin 60° + sin A cos 60° – cos A sin 60°
= 2 sin A cos 60°
= 2 sin A \(\left(\frac{1}{2}\right)\)
= sin A
= RHS

(ii) 4A = 3A + A
tan 4A = tan (3A + A)
tan 4A = \(\frac{\tan 3 \mathrm{A}+\tan \mathrm{A}}{1-\tan 3 \mathrm{A} \tan \mathrm{A}}\)
on cross multiplication we get,
tan 3A + tan A = tan 4A (1 – tan 3A tan A) = tan 4A – tan 4A tan 3A tanA
i.e., tan 4A tan 3A tan A + tan 3A + tan A = tan 4A
(or) tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 9.
(i) If tan θ = 3 find tan 3θ
(ii) If sin A = \(\frac{12}{13}\), find sin 3A.
Solution:
(i) tan θ = 3
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 14

(ii) If sin A = \(\frac{12}{13}\)
We know that sin 3A = 3 sin A – 4 sin3 A
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 15

Question 10.
If sin A = \(\frac{3}{5}\), find the values of cos 3A and tan 3A.
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 16
Given sin A = \(\frac{3}{5}\)
cos A = \(\frac{\text { Adjacent side }}{\text { Hypotenuse }}=\frac{4}{5}\)
and tan A = \(\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{3}{4}\)
We know that cos 3A = 4 cos3 A – 3 cos A
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 17

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 11.
Prove that \(\frac{\sin (B-C)}{\cos B \cos C}+\frac{\sin (C-A)}{\cos C \cos A}+\frac{\sin (A-B)}{\cos A \cos B}=0\)
Solution:
Consider \(\frac{\sin (B-C)}{\cos B \cos C}\)
= \(\frac{\sin \mathrm{B} \cos \mathrm{C}-\cos \mathrm{B} \sin \mathrm{C}}{\cos \mathrm{B} \cos \mathrm{C}}\)
= \(\frac{\sin B \cos C}{\cos B \cos C}-\frac{\cos B \sin C}{\cos B \cos C}\)
= tan B – tan C ……… (1)
Similarly we can prove \(\frac{\sin (C-A)}{\cos C \cos A}\) = tan C – tan A …….(2)
and \(\frac{\sin (A-B)}{\cos A \cos B}\) = tan A – tan B …….. (3)
Add (1), (2) and (3) we get
\(\frac{\sin (B-C)}{\cos B \cos C}+\frac{\sin (C-A)}{\cos C \cos A}+\frac{\sin (A-B)}{\cos A \cos B}=0\)

Question 12.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = \(\frac{1}{x}+\frac{1}{y}\).
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 18
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 19
Hence proved.

Question 13.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = \(\frac{a^{2}+b^{2}-2}{2}\)
Solution:
Consider a2 + b2 = sin2α + sin2β + 2 sin α sin β + cos2α + cos2β + 2 cos α cos β
a2 + b2 = (sin2α + cos2α) + (sin2β + cos2β) + 2[cos α cos β + sin α sin β]
a2 + b2 = 1 + 1 + 2 cos(α – β)
∴ cos(α – β) = \(\frac{a^{2}+b^{2}-2}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 14.
Find the value of tan\(\frac{\pi}{8}\).
Solution:
Method 1:
\(\frac{\pi}{8}=\frac{180^{\circ}}{8}=\frac{45^{\circ}}{2}=22 \frac{1}{2}\)
We know that tan 2A = \(\frac{2 \tan A}{1-\tan ^{2} A}\)
Put A = 22\(\frac{1}{2}\) in the above formula
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 20
On cross multiplication we get
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 21
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 22
Here a = 1, b = 2, c = -1
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 23
Since 22\(\frac{1}{2}\) is acute tan 22\(\frac{1}{2}\) is positive tan 22\(\frac{1}{2}\) = tan \(\frac{\pi}{8}\)
= -1 + √2
= √2 – 1

Method 2:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 24
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 25
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 26
∴ \(\tan ^{2} 22 \frac{1}{2}=(\sqrt{2}-1)^{2}\)
Taking square root, \(\tan ^{2} 22 \frac{1}{2}\) = ±(√2 – 1)
But \(22 \frac{1}{2}\) lies in first quadrant, tan \(22 \frac{1}{2}\) is positive.
∴ tan 22\(\frac{1}{2}\) = √2 – 1

Method 3:
consider tan A = \(\frac{\sin 2 A}{1+\cos 2 A}\)
Put A = \(22 \frac{1}{2}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 27
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 28
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 29
tan 22\(\frac{1}{2}\) = √2 – 1

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2

Question 15.
If tan α = \(\frac{1}{7}\), sin β = \(\frac{1}{\sqrt{10}}\). Prove that α + 2β = \(\frac{\pi}{4}\) where 0 < α < \(\frac{\pi}{2}\) and 0 < β < \(\frac{\pi}{2}\).
Solution:
Given that tan α = \(\frac{1}{7}\)
We wish to find tan(α + 2β)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 30
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 31
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.2 32

11th Model Question Papers 2020-2021 Tamil Nadu State Board English Tamil Medium with Answers

Subject Matter Experts at SamacheerKalvi.Guide have created Samacheer Kalvi Tamil Nadu State Board Syllabus New Paper Pattern 11th Model Question Papers 2020-2021 with Answers Pdf Free Download in English Medium and Tamil Medium of TN 11th Standard Public Exam Question Papers Answer Key, New Paper Pattern of HSC 11th Class Previous Year Question Papers, Plus One +1 Model Sample Papers, Tamil Nadu 11th Quarterly Half Yearly Model Question Papers are part of Samacheer Kalvi.

Let us look at these Tamil Nadu Government 11th State Board Model Question Papers with Answers for All Subjects 2020-21 Tamil Medium Pdf. Students can view or download the Class 11th New Model Question Papers 2021 Tamil Nadu English Medium Pdf for their upcoming Tamil Nadu HSC Board Exams. Students can also read Tamilnadu Samcheer Kalvi 11th Books Solutions.

The higher officials of Tamil Nadu Directorate of Government Examinations conducts Public examination to Class 11 Students in the month of March. Recently Government of Tamil Nadu has made changes in the examination pattern to reduce the pressure and tension in students. Here we have provided the Tamil Nadu 11th Model Question Papers PDF, students can view and download the latest pdf of 11th Model Question Papers. Before preparing for the public examinations students need to know about TN 11th Model Question Papers. These Model Papers helps students to prepare well. In this page, we have provided all subject wise Tamil Nadu Plus One Model Question Papers. Before appearing for HSC examinations students must practice all the TN Model Question Papers to score high marks in TN Plus One Examinations.

11th New Public Exam Model Question Papers Tamil Nadu 2020 2021 English Tamil Medium

11th New Model Question Papers 2020 2021 Tamil Nadu

Here we have given TN 11th Model Question Papers with Answers for all subjects in English Tamil Medium. Previous Year Question Papers and Model Papers will help students to know about their preparation level not only that these papers will also help Students to analyze about the repeated questions and important questions that are asked in previous year public examinations. As per the new exam pattern, there will be no change in the syllabus. Now students can get their Tamil Nadu 11th Model Question Papers of all Subjects in English Tamil Medium from the above list.

It is necessary that students will understand the new pattern and style of Model Question Papers of 11th Standard Tamilnadu State Board Syllabus according to the latest exam pattern. These Tamilnadu Plus One 11th Model Question Papers State Board Tamil Medium and English Medium are useful to understand the pattern of questions asked in the board exam. Know about the important concepts to be prepared for TN HSLC Board Exams and Score More marks.

We hope the given Samacheer Kalvi Tamil Nadu State Board Syllabus New Paper Pattern Class 11th Model Question Papers 2020 2021 with Answers Pdf Free Download in English Medium and Tamil Medium will help you get through your subjective questions in the exam.

Let us know if you have any concerns regarding the Tamil Nadu Government 11th State Board Model Question Papers with Answers 2020 21 for All Subjects, TN 11th Std Public Exam Question Papers with Answer Key, New Paper Pattern of HSC Class 11th Previous Year Question Papers, Plus One +1 Model Sample Papers, Tamil Nadu 11th Quarterly Half Yearly Model Question Papers, drop a comment below and we will get back to you as soon as possible.

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.1 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.1

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.1 Text Book Back Questions and Answers

Question 1.
Convert the following degree measure into radian measure
(i) 60°
(ii) 150°
(iii) 240°
(iv) -320°
Solutions:
(i) 1°= \(\frac{\pi}{180}\) radians
∴ 60° = \(\frac{\pi}{180}\) × 60 radians = \(\frac{\pi}{3}\) radians.

(ii) 150° = \(\frac{\pi}{180}\) × 150 radians = \(\frac{5 \pi}{6}\) radians.

(iii) 240° = \(\frac{\pi}{180}\) × 240 radians = \(\frac{4 \pi}{3}\) radians.

(iv) -320° = \(\frac{\pi}{180}\) × -320 = \(\frac{-16 \pi}{9}\) radians

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Question 2.
Find the degree measure corresponding to the following radian measure.
(i) \(\frac{\pi}{8}\)
(ii) \(\frac{9 \pi}{5}\)
(iii) -3
(iv) \(\frac{11 \pi}{18}\)
Solution:
We know that, one radian = \(\frac{180^{\circ}}{\pi}\)
(i) \(\frac{\pi}{8}\)
\(\frac{\pi}{8}=\frac{180^{\circ}}{\pi} \times \frac{\pi}{8}\) degrees
= \(\frac{45}{2}\)
= 22.5°
= 22°30′ [∵ 0.5° = (0.5 × 60)’ = 30′]

(ii) \(\frac{9 \pi}{5}\)
\(\frac{9 \pi}{5}=\frac{180^{\circ}}{\pi} \times \frac{9 \pi}{5}\) degrees
= 36 × 9 degrees
= 324°

(iii) -3
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q2
= -171.81°
= -171°48′ (∵ 0.8° = (0.8 × 60)’ = 48′)

(iv) \(\frac{11 \pi}{18}\)
\(\frac{11 \pi}{18}=\frac{180}{\pi} \times \frac{11 \pi}{18}\)
= 10 × 11°
= 110°

Question 3.
Determine the quadrants in which the following degree lie.
(i) 380°
(ii) -140°
(iii) 1195°
Solution:
(i) 380° = 360°+ 20°
This is of the form 360° + θ
∴ After one completion of the round, the angle is 20°, 380° lies in the I quadrant.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q3

(ii) -140° = -90° + (-50°)
The angle is negative it moves in the anti-clockwise direction.
-140° lies in the III quadrants.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q3.1

(iii) 1195° = (3 × 360°) + 90° + 25°
∴ After three completion round, the angle will lie in the II quadrant.
1195° lies in the II quadrant.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q3.2

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Question 4.
Find the values of each of the following trigonometric ratios.
(i) sin 300°
(ii) cos(-210°)
(iii) sec 390°
(iv) tan(-855°)
(v) cosec 1125°
Solution:
(i) sin 300° = sin(360° – 60°)
[For 360° – 60°. No change in T-ratio. 300° lies in 4th quadrant ‘sin’ is negative]
= -sin 60°
= \(-\frac{\sqrt{3}}{2}\)

(ii) cos(-210°) = cos 210° (∵ cos(-θ) = cos θ)
[∵ 180 + 30°. No change in T-ratio. 210° lies 3rd quadrant ‘cos’ is negative]
= cos(180° + 30°)
= -cos 30°
= \(-\frac{\sqrt{3}}{2}\)

(iii) sec 390° = sec(360° + 30°)
= sec 30°
= \(\frac{1}{\cos 30^{\circ}}\)
= \(\frac{1}{\left(\frac{\sqrt{3}}{2}\right)}\)
= \(\frac{2}{\sqrt{3}}\)

(iv) tan(-855°) = -tan 855° (∵ tan(-θ) = – tan θ)
[∵ Multiplies of 360° are dropped out. For 180° – 45°. No change in T-ratio. 180° – 45° lies in 2nd quadrant ‘tan’ is negative]
= -tan(2 × 360° + 135°)
= -tan 135°
= -tan(180° – 45°)
= -(-tan 45°)
= -(-1)
= 1

(v) cosec 1125° = cosec(3 × 360°+ 45°)
= cosec 45°
= \(\frac{1}{\sin 45^{\circ}}\)
= \(\frac{1}{\left(\frac{1}{\sqrt{2}}\right)}\)
= √2

Question 5.
Prove that:
(i) tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
(ii) 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7 \pi}{6}\) cos2 \(\frac{\pi}{3}\) = \(\frac{3}{2}\)
(iii) \(\sec \left(\frac{3 \pi}{2}-\theta\right) \sec \left(\theta-\frac{5 \pi}{2}\right)+\tan \left(\frac{5 \pi}{2}+\theta\right) \tan \left(\theta-\frac{5 \pi}{2}\right)=-1\)
Solution:
(i) tan(-225°) = -(tan 225°)
= -(tan(180° + 45°))
= – tan 45°
= – 1
cot(-405°) = -(cot 405°)
= – cot(360° + 45°) [∵ For 360° + 45° no change in T-ratio.]
= -cot 45°
= -1
tan(-765°) = -tan 765°
= -tan(2 × 360° + 45°)
= -tan 45°
= -1
cot 675° = cot (360°+ 315°)
= cot 315°
= cot(360° – 45°)
= -cot 45°
= -1
LHS = tan(-225°) cot(-405°) – tan(-765°) cot(675°)
= (-1) (-1) – (-1) (-1)
= 1 – 1
= 0
= RHS.
Hence proved.

(ii) 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7 \pi}{6}\) cos2 \(\frac{\pi}{3}\) = \(\frac{3}{2}\)
LHS = 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7 \pi}{6}\) cos2 \(\frac{\pi}{3}\)
[∵ \(\frac{7 \pi}{6}\) = 210°, 210° = 180° + 30°. For 180° + 30° no change in T-ratio.
210° lies in 3rd quadrant, cosec θ is negative.]
= 2\(\left(\sin \frac{\pi}{6}\right)^{2}\) + (cosec (180° + 30°))2 \(\left(\cos \frac{\pi}{3}\right)^{2}\)
= 2 \(\left(\frac{1}{2}\right)^{2}\) + (-cosec 30°)2 . \(\left(\frac{1}{2}\right)^{2}\)
= \(2 \times \frac{1}{4}+(-2)^{2} \frac{1}{4}\)
= \(\frac{2}{4}+\frac{4}{4}=\frac{6}{4}\)
= \(\frac{6}{4}\)
= \(\frac{3}{2}\)
= RHS

(iii) sec(\(\frac{3 \pi}{2}\) – θ) = sec (270° – θ) = -cosec θ
[∵ For 270° – θ change T-ratio. So add ‘co’ infront ‘sec’, it becomes ‘cosec’]
sec(θ – \(\frac{5 \pi}{2}\)) = \(\sec \left(-\left(\frac{5 \pi}{2}-\theta\right)\right)\)
= sec(\(\frac{5 \pi}{2}\) – θ) [∵ sec(-θ) = θ]
= sec(450° – θ)
= sec (360° + (90° – θ))
= sec (90° – θ)
= cosec θ
[∵ For 90° – θ change in T-ratio. So add ‘co’ in front of ‘sec’ it becomes ‘cosec’]
tan(\(\frac{5 \pi}{2}\) + θ) = tan(450° + θ)
[∵ For 90° + θ, change in T-ratio. So add ‘co’ in front of ‘tan’ it becomes ‘cot’]
= tan (360° + (90° + θ))
= tan (90° + θ)
= -cot θ
\(\tan \left(\theta-\frac{5 \pi}{2}\right)=\tan \left(-\left(\frac{5 \pi}{2}-\theta\right)\right)\)
= \(-\tan \left(\frac{5 \pi}{2}-\theta\right)\) [∵ tan(-θ) = -tan θ]
= -tan(450° – θ)
= -tan(360° + (90° – θ))
= -tan(90° – θ)
= -cot θ
LHS = \(\sec \left(\frac{3 \pi}{2}-\theta\right) \sec \left(\theta-\frac{5 \pi}{2}\right)+\tan \left(\frac{5 \pi}{2}+\theta\right) \tan \left(\theta-\frac{5 \pi}{2}\right)\)
= -cosec θ (cosec θ) + (-cot θ) (-cot θ)
= -cosec2 θ + cot2 θ
= -(1 + cot2 θ) + cot2 θ [∵ 1 + cot2 θ = cosec2 θ]
= -1
= RHS

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Question 6.
If A, B, C, D are angles of a cyclic quadrilateral, prove that: cos A + cos B + cos C + cos D = 0.
Solution:
Note: If the vertices of a quadrilateral lie on the circle then the quadrilateral is called a cyclic quadrilateral.
In a cyclic quadrilateral sum of opposite angles are 180°.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q6
Since A, B, C, D are angles of cyclic quadrilateral
A + C = 180° and B + D = 180°
LHS = cos A + cos B + cos C + cos D
= cos A + cos B + cos(180° – A) + cos(180° – B)
= cos A + cos B – cos A – cos B
= 0
= RHS

Question 7.
Prove that
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q7.2
(ii) sin θ . cos{sin(\(\frac{\pi}{2}\) – θ) . cosec θ + cos(\(\frac{\pi}{2}\) – θ) . sec θ} = 1
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q7.2
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q7

(ii) sin θ . cos{sin(\(\frac{\pi}{2}\) – θ) . cosec θ + cos(\(\frac{\pi}{2}\) – θ) . sec θ} = 1
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q7.1

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Question 8.
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Solution:
LHS = cos 510° cos 330° + sin 390° cos 120°
= cos(360° + 150°) cos(360° – 30°) + sin(360° + 30°) × cos(180° – 60°)
= cos 150° cos 30° + sin 30° (-cos 60°)
= cos(180° – 30°) cos 30° + sin 30° cos 60°
= -cos 30° cos 30° + \(\frac{1}{2} \times\left(\frac{-1}{2}\right)\)
= \(-\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{2}\)
= \(-\frac{3}{4}-\frac{1}{4}\)
= \(\frac{-3-1}{4}\)
= -1

Question 9.
Prove that:
(i) tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q9.1
Solution:
(i) tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = (tan x) (-cot(π – x) – cos x cos x
[∵ cot(x – π) = cot(-(π – x)) = -cot(π – x) = cot x]
= tan x cot x – cos2 x
= 1 – cos2 x
= sin2 x [∵ sin2 x + cos2 x = 1 ⇒ sin2 x = (1 – cos2 x)]

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q9.1
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q9

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1

Question 10.
If sin θ = \(\frac{3}{5}\), tan φ = \(\frac{1}{2}\) and \(\frac{\pi}{2}\) < θ < π < φ < \(\frac{3 \pi}{2}\), then find the value of 8 tan θ – √5 sec φ.
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.1 Q10
Given that sin θ = \(\frac{3}{5}=\frac{\text { Opposite side }}{\text { Hypotenuse }}\)
∵ AB = \(\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}\) = 4
Here θ lies in second quadrant [∵ \(\frac{\pi}{2}\) < θ < π]
∵ tan θ is negative.
tan θ = \(-\frac{3}{4}\)
Also given that tan Φ = \(\frac{1}{2}=\frac{\text { Opposite side }}{\text { Adjacent side }}\)
∴ PR = \(\sqrt{\mathrm{PQ}^{2}+\mathrm{QP}^{2}}=\sqrt{4+1}=\sqrt{5}\)
Here Φ lies in third quadrant (∵ π < Φ < \(\frac{3 \pi}{2}\))
∴ sec Φ is negative.
\(\sec \phi=\frac{1}{\cos \phi}=-\frac{1}{\left(\frac{2}{\sqrt{5}}\right)}=-\frac{\sqrt{5}}{2}\)
Now 8 tan θ – √5 sec Φ = \(8\left(-\frac{3}{4}\right)-\sqrt{5}\left(\frac{-\sqrt{5}}{2}\right)\)
= 2 × (-3) + \(\frac{5}{2}\)
= -6 + \(\frac{5}{2}\)
= \(\frac{-12+5}{2}\)
= \(\frac{-7}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Students can download 11th Business Maths Chapter 3 Analytical Geometry Ex 3.7 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 3 Analytical Geometry Ex 3.7

Samacheer Kalvi 11th Business Maths Analytical Geometry Ex 3.7 Text Book Back Questions and Answers

Question 1.
If m1 and m2 are the slopes of the pair of lines given by ax2 + 2hxy + by2 = 0, then the value of m1 + m2 is:
(a) \(\frac{2 h}{b}\)
(b) \(-\frac{2 h}{b}\)
(c) \(\frac{2 h}{a}\)
(d) \(-\frac{2 h}{a}\)
Answer:
(b) \(-\frac{2 h}{b}\)

Question 2.
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
(a) \(\tan ^{-1}\left(\frac{1}{3}\right)\)
(b) \(\tan ^{-1}\left(\frac{1}{2}\right)\)
(c) \(\tan ^{-1}\left(\frac{\sqrt{33}}{5}\right)\)
(d) \(\tan ^{-1}\left(\frac{5}{\sqrt{33}}\right)\)
Answer:
(c) \(\tan ^{-1}\left(\frac{\sqrt{33}}{5}\right)\)
Hint:
x2 – 7xy + 4y2 = 0
Here 2h = -7, a = 1, b = 4
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7 Q2

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 3.
If the lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are the diameters of a circle, then its centre is:
(a) (-1, 1)
(b) (1, 1)
(c) ( 1, -1)
(d) (-1, -1)
Answer:
(c) ( 1, -1)
Hint:
To get centre we must solve the given equations
2x – 3y – 5 = 0 …….(1)
3x – 4y – 7 = 0 ………(2)
(1) × 3 ⇒ 6x – 9y = 15
(2) × 2 ⇒ 6x – 8y = 14
Subtracting, -y = 1 ⇒ y = -1
Using y = -1 in (1) we get
2x + 3 – 5 = 0
⇒ 2x = 2
⇒ x = 1

Question 4.
The x-intercept of the straight line 3x + 2y – 1 = 0 is
(a) 3
(b) 2
(c) \(\frac{1}{3}\)
(d) \(\frac{1}{2}\)
Answer:
(c) \(\frac{1}{3}\)
Hint:
To get x-intercept put y = 0 in 3x + 2y – 1 = 0 we get
3x – 1 = 0
x = \(\frac{1}{3}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 5.
The slope of the line 7x + 5y – 8 = 0 is:
(a) \(\frac{7}{5}\)
(b) \(-\frac{7}{5}\)
(c) \(\frac{5}{7}\)
(d) \(-\frac{5}{7}\)
Answer:
(b) \(-\frac{7}{5}\)
Hint:
Slope of 7x + 5y – 8 = 0 is = \(\frac{-x \text { coefficient }}{y \text { coefficient }}\) = \(-\frac{7}{5}\)

Question 6.
The locus of the point P which moves such that P is at equidistance from their coordinate axes is:
(a) y = \(\frac{1}{x}\)
(b) y = -x
(c) y = x
(d) y = \(\frac{-1}{x}\)
Answer:
(c) y = x
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7 Q6
Given PA = PB
y1 = x1
∴ Locus is y = x

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 7.
The locus of the point P which moves such that P is always at equidistance from the line x + 2y + 7 = 0:
(a) x + 2y + 2 = 0
(b) x – 2y + 1 = 0
(c) 2x – y + 2 = 0
(d) 3x + y + 1 = 0
Answer:
(a) x + 2y + 2 = 0
Hint:
Locus is line parallel to line x + 2y + 7 = 0 which is x + 2y + 2 = 0

Question 8.
If kx2 + 3xy – 2y2 = 0 represent a pair of lines which are perpendicular then k is equal to:
(a) \(\frac{1}{2}\)
(b) \(-\frac{1}{2}\)
(c) 2
(d) -2
Answer:
(c) 2
Hint:
Here a = k, b = -2
Condition for perpendicular is
a + b = 0
⇒ k – 2 = 0
⇒ k = 2

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 9.
(1, -2) is the centre of the circle x2 + y2 + ax + by – 4 = 0, then its radius:
(a) 3
(b) 2
(c) 4
(d) 1
Answer:
(a) 3
Hint:
Given centre (-g, -f) = (1, -2)
From the given equation c = -4
Radius = \(\sqrt{g^{2}+f^{2}-c}=\sqrt{1+4-(-4)}=\sqrt{9}\) = 3

Question 10.
The length of the tangent from (4, 5) to the circle x2 + y2 = 16 is:
(a) 4
(b) 5
(c) 16
(d) 25
Answer:
(b) 5
Hint:
Length of the tangent from (x1, y1) to the circle x2 + y2 = 16 is \(\sqrt{x_{1}^{2}+y_{1}^{2}-16}=5\)

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 11.
The focus of the parabola x2 = 16y is:
(a) (4 , 0)
(b) (-4, 0)
(c) (0, 4)
(d) (0, -4)
Answer:
(c) (0, 4)
Hint:
x2 = 16y
Here 4a = 16 ⇒ a = 4
Focus is (0, a) = (0, 4)

Question 12.
Length of the latus rectum of the parabola y2 = -25x:
(a) 25
(b) -5
(c) 5
(d) -25
Answer:
(a) 25
Hint:
y2 = -25a
Here 4a = 25 which is the length of the latus rectum.

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 13.
The centre of the circle x2 + y2 – 2x + 2y – 9 = 0 is:
(a) (1, 1)
(b) (-1, 1)
(c) (-1, 1)
(d) (1, -1)
Answer:
(d) (1, -1)
Hint:
2g = -2, 2f = 2
g = -1, f = 1
Centre = (-g, -f) = (1, -1)

Question 14.
The equation of the circle with centre on the x axis and passing through the origin is:
(a) x2 – 2ax + y2 = 0
(b) y2 – 2ay + x2 = 0
(c) x2 + y2 = a2
(d) x2 – 2ay + y2 = 0
Answer:
(a) x2 – 2ax + y2 = 0
Hint:
Let the centre on the x-axis as (a, 0).
This circle passing through the origin so the radius
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7 Q14
Now centre (h, k) = (a, 0)
Radius = a
Equation of the circle is (x – a)2 + (y – 0)2 = a2
⇒ x2 – 2ax + a2 + y2 = a2
⇒ x2 – 2ax + y2 = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 15.
If the centre of the circle is (-a, -b) and radius is \(\sqrt{a^{2}-b^{2}}\) then the equation of circle is:
(a) x2 + y2 + 2ax + 2by + 2b2 = 0
(b) x2 + y2 + 2ax + 2by – 2b2 = 0
(c) x2 + y2 – 2ax – 2by – 2b2 = 0
(d) x2 + y2 – 2ax – 2by + 2b2 = 0
Answer:
(a) x2 + y2 + 2ax + 2by + 2b2 = 0
Hint:
Equation of the circle is (x – h)2 + (y – k)2 = r2
⇒ (x + a)2 + (y + b)2 = a2 – b2
⇒ x2 + y2 + 2ax + 2by + a2 + b2 = a2 – b2
⇒ x2 + y2 + 2ax + 2by + 2b2 = 0

Question 16.
Combined equation of co-ordinate axes is:
(a) x2 – y2 = 0
(b) x2 + y2 = 0
(c) xy = c
(d) xy = 0
Answer:
(d) xy = 0
Hint:
Equation of x-axis is y = 0
Equation of y-axis is x = 0
Combine equation is xy = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 17.
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
(a) 2
(b) -2
(c) 4
(d) -4
Answer:
(a) 2
Hint:
Here a = 0, h = 2, b = 2
Condition for pair of parallel lines is b2 – ab = 0
4 – a(2) = 0
⇒ -2a = -4
⇒ a = 2

Question 18.
In the equation of the circle x2 + y2 = 16 then v intercept is (are):
(a) 4
(b) 16
(c) ±4
(d) ±16
Answer:
(c) ±4
Hint:
To get y-intercept put x = 0 in the circle equation we get
0 + y2 = 16
∴ y = ±4

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 19.
If the perimeter of the circle is 8π units and centre is (2, 2) then the equation of the circle is:
(a) (x – 2)2 + (y – 2)2 = 4
(b) (x – 2)2 + (y – 2)2 = 16
(c) (x – 4)2 + (y – 4)2 = 16
(d) x2 + y2 = 4
Answer:
(c) (x – 2)2 + (y – 2)2 = 16
Hint:
Perimeter, 2πr = 8π
r = 4
Centre is (2, 2)
Equation of the circle is (x – 2)2 + (y – 2)2 = 42 = 16

Question 20.
The equation of the circle with centre (3, -4) and touches the x-axis is:
(a) (x – 3)2 + (y – 4)2 = 4
(b) (x – 3)2 + (y + 4)2 = 16
(c) (x – 3)2 + (y – 4)2 = 16
(d) x2 + y2 = 16
Answer:
(b) (x – 3)2 + (y + 4)2 = 16
Hint:
Centre (3, -4).
It touches the x-axis.
The absolute value of y-coordinate is the radius, i.e., radius = 4.
Equation is (x – 3)2 + (y + 4)2 = 16

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 21.
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
(a) 6
(b) 3
(c) 12
(d) 4
Answer:
(a) 6
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7 Q21

Question 22.
The eccentricity of the parabola is:
(a) 3
(b) 2
(c) 0
(d) 1
Answer:
(d) 1

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 23.
The double ordinate passing through the focus is:
(a) focal chord
(b) latus rectum
(c) directrix
(d) axis
Answer:
(b) latus rectum
Hint:
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7 Q23

Question 24.
The distance between directrix and focus of a parabola y2 = 4ax is:
(a) a
(b) 2a
(c) 4a
(d) 3a
Answer:
(b) 2a

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.7

Question 25.
The equation of directrix of the parabola y2 = -x is:
(a) 4x + 1 = 0
(b) 4x – 1 = 0
(c) x – 1 = 0
(d) x + 4 = 0
Answer:
(b) 4x – 1 = 0
Hint:
y2 = -x.
It is a parabola open leftwards.
Here 4a = 1 ⇒ a = \(\frac{1}{4}\)
Equation of directrix is x = a.
i.e., x = \(\frac{1}{4}\) (or) 4x – 1 = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6

Students can download 11th Business Maths Chapter 3 Analytical Geometry Ex 3.6 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 3 Analytical Geometry Ex 3.6

Samacheer Kalvi 11th Business Maths Analytical Geometry Ex 3.6 Text Book Back Questions and Answers

Question 1.
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
Solution:
F(-1, -2)
l : 4x – 3y + 2 = 0
Let P(x, y) be any point on the parabola.
FP = PM
⇒ FP2 = PM2
⇒ (x + 1)2 + (y + 2)2 = \(\left[\frac{4 x-3 y+2}{\sqrt{4^{2}+(-3)^{2}}}\right]^{2}\)
⇒ x2 + 2x + 1 + y2 + 4y + 4 = \(\frac{16 x^{2}+9 y^{2}+4-24 x y+16 x-12 y}{(16+9)}\)
⇒ 25(x2 + y2 + 2x + 4y + 5) = 16x2 + 9y2 – 24xy + 16x – 12y + 4
⇒ (25 – 16)x2 + (25 – 9)y2 + 24xy + (50 – 16)x + (100 + 12)y + 125 – 4 = 0
⇒ 9x2 + 16y2 + 24xy + 34x + 112y + 121 = 0

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6

Question 2.
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Solution:
y2 = kx passes through (4, -2)
(-2)2 = k(4)
⇒ 4 = 4k
⇒ k = 1
y2 = x = 4(\(\frac{1}{4}\))x
a = \(\frac{1}{4}\)
Equation of LR is x = a or x – a = 0
i.e., x = \(\frac{1}{4}\)
⇒ 4x = 1
⇒ 4x – 1 = 0
Focus (a, 0) = (\(\frac{1}{4}\), 0)

Question 3.
Find the vertex, focus, axis, directrix, and the length of the latus rectum of the parabola y2 – 8y – 8x + 24 = 0.
Solution:
y2 – 8y – 8x + 24 = 0
⇒ y2 – 8y – 42 = 8x – 24 + 42
⇒ (y – 4)2 = 8x – 8
⇒ (y – 4)2 = 8(x – 1)
⇒ (y – 4)2 = 4(2) (x – 1)
∴ a = 2
Y2 = 4(2)X where X = x – 1 and Y = y – 4
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6 Q3

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6

Question 4.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola (a) y2 = 20x, (b) x2 = 8y, (c) x2 = -16y
Solution:
(a) y2 = 20x
y2 = 4(5)x
∴ a = 5
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6 Q4

(b) x2 = 8y = 4(2)y
∴ a = 2
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6 Q4.1

(c) x2 = -16y = -4(4)y
∴ a = 4
Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6 Q4.2

Question 5.
The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ \(\frac{1}{5}\) x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.
Solution:
Let output be x and average variable cost = y
y = \(\frac{1}{5}\) x2 – 6x + 100
⇒ 5y = x2 – 30x + 500
⇒ x2 – 30x + 225 = 5y – 500 + 225
⇒ (x – 15)2 = 5y – 275
⇒ (x – 15)2 = 5(y – 55) which is of the form X2 = 4(\(\frac{5}{4}\))Y
∴ Y average variable cost curve is a parabola
Vertex (0, 0)
x – 15 = 0; y – 55 = 0
x = 15; y = 55
At the vertex, output is 15 tonnes and average cost is ₹ 55.

Samacheer Kalvi 11th Business Maths Guide Chapter 3 Analytical Geometry Ex 3.6

Question 6.
The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.
Solution:
y = -x2 + 10x – 15
⇒ y = -[x2 – 10x + 52 – 52 + 15]
⇒ y = -[(x – 5)2 – 10]
⇒ y = 10 – (x – 5)2
⇒ (x – 5)2 = -(y – 10)
This is a parabola which is open downwards.
Vertex is the maximum point.
∴ Profit is maximum when x – 5 = 0 (or) x = 5 months.
After that profit gradually reduces.
∴ The best time to end the project is after 5 months.