Students can download 11th Business Maths Chapter 4 Trigonometry Ex 4.4 Questions and Answers, Notes, Samcheer Kalvi 11th Business Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 11th Business Maths Solutions Chapter 4 Trigonometry Ex 4.4

Samacheer Kalvi 11th Business Maths Trigonometry Ex 4.4 Text Book Back Questions and Answers

Question 1.
Find the principal value of the following:
(i) sin-1 (\(-\frac{1}{2}\))
(ii) tan-1 (-1)
(iii) cosec-1 (2)
(iv) sec-1 (-√2)
Solution:
(i) sin-1 (\(-\frac{1}{2}\))
Let sin-1 (\(-\frac{1}{2}\)) = y
[where \(\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}\)]
\(-\frac{1}{2}\) = sin y
sin y = \(-\frac{1}{2}\) (∵ \(\sin \frac{\pi}{6}=\frac{1}{2}\))
sin y = sin(\(-\frac{\pi}{6}\)) [∵ \(\sin \left(-\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)\)]
∴ y = \(-\frac{\pi}{6}\)
∴ The principal value of sin-1 (\(-\frac{1}{2}\)) is \(-\frac{\pi}{6}\)

(ii) tan-1 (-1) = y
(-1) = tan y where \(\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}\)
(or) tan y = – 1
tan y = tan(\(-\frac{\pi}{4}\)) (∵ \(\tan \frac{\pi}{4}\) = 1)
∴ y = \(-\frac{\pi}{4}\) [∵ \(\tan \left(-\frac{\pi}{4}\right)=-\tan \left(\frac{\pi}{4}\right)=-1\)]
∴ The principal value of tan-1 (-1) is \(-\frac{\pi}{4}\).

(iii) Let cosec-1 (2) = y
2 = cosec y
(or) cosec y = 2
⇒ \(\frac{1}{\sin y}\) = 2
⇒ sin y = \(\frac{1}{2}\) (Take reciprocal)
⇒ sin y = \(\sin \left(\frac{\pi}{6}\right)\)
⇒ y = \(\frac{\pi}{6}\)
The principal value of cosec-1 (-1) is \(\frac{\pi}{6}\).

(iv) Let sec-1 (-√2 ) = y
-√2 = sec y
sec y = -√2
\(\frac{1}{\cos y}\) = -√2
Taking reciprocal cos y = \(\frac{-1}{\sqrt{2}}\) [where 0 ≤ y ≤ π]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q1
∴ The principal value of sec-1 (-√2) is \(\frac{3 \pi}{4}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 2.
Prove that
(i) 2 tan-1 (x) = \(\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\)
(ii) \(\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}\)
Solution:
(i) Let tan-1 x = θ
x = tan θ
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q2

(ii) \(\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q2.1

Question 3.
Show that \(\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)=\tan ^{-1}\left(\frac{3}{4}\right)\)
Solution:
We know that tan-1 x + tan-1 y = \(\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)
Now LHS = \(\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q3

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 4.
Solve: tan-1 2x + tan-1 3x = \(\frac{\pi}{4}\).
Solution:
Given tan-1 (2x) + tan-1 (3x) = \(\frac{\pi}{4}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q4
⇒ 5x = 1(1 – 6x2)
⇒ 6x2 + 5x – 1 = 0
⇒ (x + 1) (6x – 1) = 0
⇒ x + 1 = 0 (or) 6x – 1 = 0
⇒ x = -1 (or) x = \(\frac{1}{6}\)
x = -1 is rejected. It doesn’t satisfies the question.
Note: Put x = -1 in the given question.
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q4.1
So the question changes.

Question 5.
Solve: tan-1 (x + 1) + tan-1 (x – 1) = \(\tan ^{-1}\left(\frac{4}{7}\right)\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q5
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q5.1
⇒ 7x = 2(2 – x2)
⇒ 7x = 4 – 2x2
⇒ 2x2 + 7x – 4 = 0
⇒ (x + 4) (2x – 1) = 0
⇒ x + 4 = 0 (or) 2x – 1 = 0
⇒ x = -4 (or) x = \(\frac{1}{2}\)
x = -4 is rejected, since does not satisfies the question.
∴ x = \(\frac{1}{2}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 6.
Evaluate
(i) cos[tan-1(\(\frac{3}{4}\))]
(ii) \(\sin \left[\frac{1}{2} \cos ^{-1}\left(\frac{4}{5}\right)\right]\)
Solution:
(i) Let \(\tan ^{-1}\left(\frac{3}{4}\right)\) = θ
\(\frac{3}{4}\) = tan θ
tan θ = \(\frac{3}{4}\)
∴ cos θ = \(\frac{4}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6
Now \(\cos \left(\tan ^{-1} \frac{3}{4}\right)\) = cos θ = \(\frac{4}{5}\)

(ii) Let \(\cos ^{-1}\left(\frac{4}{5}\right)\) = A
Then \(\frac{4}{5}\) = cos A
cos A = \(\frac{4}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6.1
We know that
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q6.2

Question 7.
Evaluate: \(\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q7
Let \(\sin ^{-1}\left(\frac{4}{5}\right)\) = A
sin A = \(\frac{4}{5}\)
∴ cos A = \(\frac{3}{5}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q7.1
Let \(\sin ^{-1}\left(\frac{12}{13}\right)\) = B
\(\frac{12}{13}\) = sin B
sin B = \(\frac{12}{13}\)
∴ cos B = \(\frac{5}{13}\)
Now \(\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{12}{13}\right)\right)\) = cos (A + B)
= cos A cos B – sin A sin B
= \(\frac{3}{5} \times \frac{5}{13}-\frac{4}{5} \times \frac{12}{13}\)
= \(\frac{15}{65}-\frac{48}{65}\)
= \(-\frac{33}{65}\)

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 8.
Prove that \(\tan ^{-1}\left(\frac{m}{n}\right)-\tan ^{-1}\left(\frac{m-n}{m+n}\right)=\frac{\pi}{4}\)
Solution:
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q8

Question 9.
Show that \(\sin ^{-1}\left(-\frac{3}{5}\right)-\sin ^{-1}\left(-\frac{8}{17}\right)=\cos ^{-1}\left(\frac{84}{85}\right)\)
Solution:
\(\sin ^{-1}\left(-\frac{3}{5}\right)-\sin ^{-1}\left(-\frac{8}{17}\right)=-\sin ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{8}{17}\right)\)
= \(\sin ^{-1}\left(\frac{8}{17}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9
Let \(\sin ^{-1}\left(\frac{8}{17}\right)\) = A
\(\frac{8}{17}\) = sin A
sin A = \(\frac{8}{17}\)
∴ cos A = \(\frac{15}{17}\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9.1
Let \(\sin ^{-1}\left(\frac{3}{5}\right)\) = B
sin B = \(\frac{3}{5}\)
∴ cos B = \(\frac{4}{5}\)
Consider cos(A – B) = cos A cos B + sin A sin B
= \(\frac{15}{17} \times \frac{4}{5}+\frac{8}{17} \times \frac{3}{5}\)
= \(\frac{60}{85}+\frac{24}{85}\)
cos (A – B) = \(\frac{84}{85}\)
∴ A – B = \(\cos ^{-1}\left(\frac{84}{85}\right)\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q9.2

Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4

Question 10.
Express \(\tan ^{-1}\left[\frac{\cos x}{1-\sin x}\right]\), \(-\frac{\pi}{2}<x<\frac{3 \pi}{2}\) in the simplest form.
Solution:
\(\tan ^{-1}\left[\frac{\cos x}{1-\sin x}\right]\)
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.1
[∵ a2 – b2 = (a + b) (a – b)]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.2
[∵ Divide each term by cos \(\frac{x}{2}\)]
Samacheer Kalvi 11th Business Maths Guide Chapter 4 Trigonometry Ex 4.4 Q10.3