Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Students can download Maths Chapter 3 Algebra Ex 3.4 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.4

Question 1.
Expand the following:
(i) (2x + 3y + 4z)2
(ii) (-p + 2q + 3r)2
(iii) (2p + 3) (2p – 4) (2p – 5)
(iv) (3a + 1) (3a – 2) (3a + 4)
Solution:
We know that (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
(i) (2x + 3y + 4z)2 = (2x)2 + (3y)2 + (4z)2 + 2(2x) (3y) + 2(3y) (4z) + 2(4z) (2x)
= 4x2 + 9y2 + 16z2 + 12xy + 24yz + 16xz

(ii) (-p + 2q + 3r)2 = (-p)2 + (2q)2 + (3r)2 + 2(-p) (2q) + 2(2q)(3r) + 2(3r) (- p)
= p2+ 4q2 + 9r2 – 4pq + 12qr – 6pr

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

(iii) (2p + 3) (2p – 4) (2p – 5)
[Here x = 2p, a = 3, b = -4 and c = -5]
= (2p)3 + (3 – 4 – 5) (2p)2 + [(3)(-4) + (-4)(-5) + (3) (-5)] 2p + (3) (-4) (-5)
= 8p3 + (-6)(4p2) + (-12 + 20 – 15) 2p + 60
= 8p3 – 24p2 – 14p + 60

(iv) (3a + 1) (3a – 2) (3a + 4)
[Here x = 3a, a = 1, b = -2 and c = 4]
= (3a)3 + (1 – 2 + 4) (3a)2 + [(1)(-2) + (-2) (4) + (4) (1)] (3a) + (1) (-2) (4)
= 27a3 + 3(9a2) + (-2 – 8 + 4) (3a) – 8
= 27a3 + 27a2 – 18a – 8

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 2.
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion.
(i) (x + 5)(x + 6)(x + 7)
Solution:
[Here x = x, a = 5, b = 6, c = 7]
(x + a) (x + b) (x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
coefficient of x2 = 5 + 6 + 7
= 18
coefficient of x = 30 + 42 + 35
= 107
constant term = (5) (6) (7)
= 210

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

(ii) (2x + 3)(2x – 5) (2x – 6)
Solution:
[Here x = 2x, a = 3, b = -5, c = -6]
(x + a) (x + b) (x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
coefficient of x2 = (3 – 5 – 6)4 [(2x)2 = 4x2]
= (-8) (4)
= -32
coefficient of x = [(3)(-5) + (-5)(-6) + (-6)(3)](2)
= (-15 + 30-18) (2)
= (-3) (2)
= -6
constant term = (3) (-5) (-6)
= 90

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 3.
If (x + a)(x + b)(x + c) = x3 + 14x2 + 59x + 70, find the value of
(i) a + b + c
(ii) \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)
(iii) a2 + b2 + c2
(iv) \(\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}\)
Solution:
(x + a) (x + b) (x + c) = x3 + 14x2 + 59x + 70
x3 + (a + b + c)x2 + (ab + bc + ac)x + abc = x3 + 14x2 + 59x + 70
a + b + c = 14, ab + bc + ac = 59, abc = 70
(i) a + b + c = 14

(ii) \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) = \(\frac{bc+ac+ab}{abc}\)
= \(\frac{59}{70}\)

(iii) a2 + b2 + c2 = (a + b + c)2 – 2 (ab + bc + ac)
= (14)2 – 2(59)
= 196 – 118
= 78

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 1

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 4.
Expand:
(i) (3a – 4b)3
Solution:
(a – b)3 = a3 – b3 – 3ab (a – b)
(3a – 4b)3 = (3a)3 – (4b)3 – 3(3a)(4b)(3a – 4b)
= 27a3 – 64b3 – 36ab (3a – 4b)
= 27a3 – 64b3 – 108a2b + 144ab2

(ii) [x + \(\frac{1}{y}]^{3}\)
Solution:
(a + b)3 = a3 + b3 + 3ab (a + b)
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 2

Question 5.
Evaluate the following by using identities:
(i) 983
Solution:
983 = (100 – 2)3 [(a – b)3 = a3 – b3 – 3ab (a – b)]
= 1003 – (2)3 – 3(100) (2) (100 – 2)
= 1000000 – 8 – 600(98)
= 1000000 – 8 – 58800
= 1000000 – 58808
= 941192

(ii) 10013
Solution:
(1001)3 = (1000 + 1)3
[(a + b)3 = a3 + b3 + 3ab (a + b)]
= (1000)3 + 13 + 3(1000) (1) (1000 + 1)
= 1000000000 + 1 + 3000 (1001)
= 1000000001 + 3003000
= 1003003001

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 6.
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2.
Solution:
x + y + z = 9; xy + yz + zx = 26
x2 + y2 + z2 = (x + y + z)2 – 2xy – 2yz – 2xz
= (x + y + z)2 – 2 (xy + yz + zx)
= 92 – 2(26)
= 81 – 52
= 29

Question 7.
Find 27a3 + 64b3, If 3a + 4b = 10 and ab = 2
Solution:
3a + Ab = 10, ab = 2
27a3 + 64b3 = (3a)3 + (4b)3
[a3 + b3 = (a + b)3 – 3 ab (a + b)]
= (3a + 4b)3 – 3 × 3a × 4b (3a + 4b)
= 103 – 36ab (10)
= 1000 – 36(2)(10)
= 1000 – 720
= 280

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 8.
Find x3 – y3, if x – y = 5 and xy = 14.
Solution:
x – y = 5, xy = 14
x3 – y= (x – y)3 + 3xy (x – y)
= 53 + 3(14) (5)
= 125 + 210
= 335

Question 9.
If a + \(\frac{1}{a}\) = 6, then find the value of a3 +\(\frac{1}{a^3}\)
Solution:
a + \(\frac{1}{a}\) = 6 [a3 + b3 = (a + b)3 – 3ab (a + b)]
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 3
= 63 – 3(6)
= 216 – 18
= 198

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 10.
If x2 + \(\frac{1}{x^2}\) = 23, then find the value of x + \(\frac{1}{x}\) and x3 + \(\frac{1}{x^3}\)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 4
When x = 5 [a3 + b3 = (a + b)3 – 3ab (a + b)]
= (5)3 – 3(5)
= 125 – 15
= 110
when x = -5
x3 + \(\frac{1}{x^3}\) = (-5)3 – 3(-5)
= -125 + 15
= -110
∴ x3 + \(\frac{1}{x^3}\) = ±110

Question 11.
If (y – \(\frac{1}{y})^{3}\) = 27 then find the value of y3 – \(\frac{1}{y^3}\)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 5
= 33 + 3(3)
= 27 + 9
= 36

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 12.
Simplify:
(i) (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ca)
(ii) (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Solution:
x3 + y3 + z3 – 3xyz ≡ (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
(i) (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ea)
= (2a)3 + (3b)3 + (4c)3 – 3 (2a) (3b) (4c)
= 8a3 + 27b3 + 64c3 – 72abc

(ii) (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
= x3 + (-2y)3 + (3z)3 – 3(x) (-2y) (3z)
= x3 – 8y3 + 27z3 + 18xyz

Question 13.
By using identity evaluate the following:
(i) 73 – 103 + 33
Solution:
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
We know that a + b + c = 0 then a3 + b3 + c3 = 3ab
a + b + c = 7 + (-10) + 3
= 10 – 10
= 0
∴ 73 – 103 + 33 = 3(7) (-10) (3)
= -630

(ii) 1 + \(\frac{1}{8}\) – \(\frac{27}{8}\)
Solution:
We know that a3 + b3 + c3 = 0 then a + b + c = 3abc
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4 6

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.4

Question 14.
If 2x -3y – 4z = 0, then find 8x3 – 27y3 – 64z3.
Solution:
We know x3 +y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
x3 + y3 + z3 = (x + y + z) (x2 +y2 + z2 – xy – yz – zx) + 3xyz
8x3 – 27y3 – 64z3 = (2x)3 + (-3y)3 + (-4z)3
= (2x – 3y- 4z) [(2x)2 + (-3y)2 + (-4z)2 – (2x)(-3y) – (-3y) (-4z) -(-4z)(2x)] + 3(2x)(-3y)(-4z)
= 0 (4x2 + 9y2 + 16z2 + 6xy – 12yz + 8xz) + 72xyz
= 72xyz
8x3 – 27y3 – 64z3 = 72xyz

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Students can download Maths Chapter 1 Set Language Ex 1.2 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 1 Set Language Ex 1.2

Question 1.
Find the cardinal number of the following sets.
(i) M = {p, q, r, s, t, u}
(ii) P = {x : x = 3n + 2, n ∈ W and x < 15}
(iii) Q = {y : y = \(\frac{4}{3n}\), n ∈ N and 2 < n ≤ 5}
(iv) R = {x : x is an integer, x ∈ Z and – 5 ≤ x < 5}
(v) S = The set of all leap years between 1882 and 1906.
Solution:
(i) n (M) = 6
(ii) n (P) = 5 [n = {0, 1, 2, 3 . . . . 14}]
(iii) Since n = {3, 4, 5} ; n (Q) = 3
(iv) X = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4} ∴ n (R) = 10
(v) S = {1884, 1888, 1892, 1896, 1904}; n (S) = 5

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 2.
Identify the following sets as finite or infinite.
(i) X = The set of all districts in Tamilnadu.
(ii) Y = The set of all straight lines passing through a point.
(iii) A = {x : x ∈ Z and x < 5}
(iv) B = {x : x² – 5x + 6 = 0, x ∈ N}
Solution:
(i) Finite
(ii) Infinite set (many lines can be drawn from a point)
(iii) Infinite set {A = ……. -2, -1, 0, 1, 2, 3, 4}
(iv) Finite set [x² – 5x + 6 = 0 ⇒ (x – 3) (x – 2) = 0; x = 3 and 2]

Question 3.
Which of the following sets are equivalent or unequal or equal sets?
(i) A = The set of vowels in the English alphabets.
B = The set of all letters in the word “VOWEL”
(ii) C = {2, 3, 4, 5}
D = {x : x ∈ W, 1 < x < 5}
(iii) X = {x : x is a letter in the word “LIFE”}
Y = {F, I, L, E}
(iv) G = {x : x is a prime number and 3 < x < 23}
H = {x : x is a divisor of 18}
Solution:
(i) Equivalent set [n(A) = n(B) = 5] ∴ A ≈ B
(ii) Unequal sets [C = {2, 3, 4, 5}; D = {2, 3, 4}]
(iii) Equal sets [X = {L, I, F, E}; Y = {F, I, L, E} [n(X) = 4 = n(Y)] ∴ X ≈ Y
(iv) Equivalent sets [G = {5, 7, 11, 13, 17, 19}; H = {1, 2, 3, 6, 9, 18}]
[n(G) = n(H) = 6 ∴ G ≈ H)]

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 4.
Identify the following sets as null set or singleton set.
(i) A = {x : x ∈ N, 1 < x < 2}
(ii) B = The set of all even natural numbers which are not divisible by 2
(iii) C = {0}.
(iv) D = The set of all triangles having four sides.
Solution:
(i) Null set [No natural numbers is in between 1 and 2]
(ii) Null set [All the even natural numbers are not divisible by 2]
(Hi) Singleton set [n (C) = 1]
(iv) Null set [All the triangles has 3 sides]

Question 5.
State which pairs of sets are disjoint or overlapping?
(i) A = {f, i, a, s} and B = {a, n, f, h, s}
A = {f, i, a, s} and B = {a, n, f, h, s}
A and B are overlapping sets

(ii) C = {x : x is a prime number, x > 2} and D = {x : x is an even prime number}
C= {3, 5, 7…….}
D = {2}
C and D are disjoint sets

(iii) E = {x : x is a factor of 24} and F = {x : x is a multiple of 3, x < 30}
E = {1, 2, 3, 4, 6, 8, 12, 24}
F = {3, 6, 9, 12, 15, 18, 21, 24, 27} [Hint: E ∩ F = {3, 6, 24, …….}]
E and F are overlapping sets

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 6.
If S = {square, rectangle, circle, rhombus, triangle}. List the elements of the following subset of S.
(i) The set of shapes which have 4 equal sides.
(ii) The set of shapes which have radius.
(iii) The set of shapes in which the sum of all interior angles is 180°.
(iv) The set of shapes which have 5 sides.
Solution:
(i) Subset of S = {square, rhombus}
(ii) Subset of S = {circle}
(iii) Subset of S = {triangle}
(iv) Subset of S = { }

Question 7.
If A = {a,{a, b}}, write all the subsets of A.
Solution:
A = {a, {a, b}}
Subset of A are Ø, {a}, {a, b}, {a, {a, b}} (or) { }, {a}, {a,b, {a,{a,b}}
P(A) = {Ø, {a}, {a, b}, {a {a, b}} (or) {{ }, {a}, {a,b, {a,{a,b}}

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 8.
Write down the power set of the following sets.
(i) A = {a, b}
(ii) B = {1, 2, 3}
(iii) D = {p, q, r, s}
(iv) E = Ø
Solution:
(i) A = {a, b)
P(A) = {{},{a},{b}, {a, b}}

(ii) B = {1, 2, 3}
P(B) = {{}, {1}, {2}, {3}, {1,2}, {2, 3}, {1,3}, {1,2,3}}

(iii) D = {p, q, r, s}
P(D) = {{},{p},{q},{r},{s},{p, q} {p, r} {p, s}
{q, r}, {q, s}, {r, s}, {p, q, r} {q, r, s}
{p, r, s} {p, q, s} {p, q, r, s}}

(iv) E = Ø
P(E) = {{}}
Note: (empty set is the subset of all the sets)

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 9.
Find the number of subsets and the number of proper subsets of the following sets.
(i) W = {red, blue, yellow}
(ii) X = {x² : x ∈ N, x² ≤ 100}
Solution:
(i) W = {red, blue, yellow}
n (W) = 3
The number of subsets of W = n [P(W)] = 2m
= 23 = 8
Number of proper subsets of W = n[P(W)] – 1
= 8 – 1
= 7 (or)
Number of proper subsets of W = 2m – 1
= 23 – 1 = 8 – 1 = 7

(ii) X = {x2 : x ∈ N, x2 ≤ 100}.
X= {1,2, 3, 4, …. 10}
n(X) = 10
The number of subsets of X = n[P(X)]
= 2m
= 210 = 1024
Number of proper subsets of X = 2m – 1
= 1024 – 1
= 1023

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2

Question 10.
(i) If n(A) = 4, find n[P(A)]
(ii) If n(A) = 0, find n[P(A)]
(Hi) If n[P(A)] = 256, find n(A)
Solution:
(i) n (A) = 4
n [P(A)] = 2m = 24
= 16

(ii) n (A) = 0
n [P(A)] = 2m = 2° = 1

(iii) n [P(A)] = 256
Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.2 1
2m = 28
∴ n (A) = 8

శ్రీ సాయి దీక్షా విధానము

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Students can download Maths Chapter 1 Set Language Ex 1.1 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 1 Set Language Ex 1.1

Question 1.
Which of the following are sets?
(i) The collection of prime numbers upto 100
(ii) The collection of rich people in India
(iii) The collection of all rivers in India
(iv) The collection of good hockey players
Solution:
(i) It is a set
(ii) It is not a set (The word “rich” is not well defined)
(iii) It is a set
(iv) It is not a set (The word “good” is not well defined)

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Question 2.
List the set of letters of the following words in Roster form.
(i) INDIA
(ii) PARALLELOGRAM
(iii) MISSISSIPPI
(iv) CZECHOSLOVAKIA
Solution:
(i) A = {I, N, D, A}
(ii) B = {P, A, R, L , E, O, G, M}
(iii) C = {M, I, S, P}
(iv) D = {C, Z, E, H, O, S, L, V, A, K, I}

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Question 3.
Consider the following sets A = {0, 3, 5, 8}, B = {2, 4, 6, 10} and C = {12, 14, 18, 20}.
(a) State whether True or False:
(i) 18 ∈ C
(if) 6 ∉ A
(iii) 14 ∉ C
(iv) 10 ∈ B
(v) 5 ∈ B
(vi) 0 ∈ B
Solution:
(i) True
(ii) True
(iii) False
(iv) True
(v) False
(vi) False

(b) Fill in the blanks:
(i) 3 ∈ …………
(ii) 14 ∈…………
(iii) 18 ……….. B
(iv) 4 ………. B
Solution:
(i) A
(ii) C
(iii) ∉
(iv) ∈

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Question 4.
Represent the following sets in Roster form.
(i) A = The set of all even natural numbers less than 20.
(ii) B = {y : y = \(\frac{1}{2n}\), n∈N, n ≤ 5}
(iii) C = {x : x is perfect cube, 27 < x < 216}
(iv) D = {x : x ∈Z, – 5 < x ≤ 2}
Solution:
(i) A= {2, 4, 6, 8, 10, 12, 14, 16, 18}
(ii) B = {\(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{6}\), \(\frac{1}{8}\), \(\frac{1}{10}\)}
(iii) C = {64, 125}
(iv) D = {-4, -3, -2, -1, 0, 1, 2}

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Question 5.
Represent the following sets in set builder form.
(i) B = The set of all cricket players in India who scored double centuries in one day internationals.
(ii) C = {\(\frac{1}{2}\), \(\frac{2}{3}\), \(\frac{3}{4}\), …….}
(iii) D = The set of all Tamil months in a year.
(iv) E = The set of odd Whole numbers less than 9.
Solution:
(i) B = {x : x is a set of all cricket players in India who scored double centuries in one day internationals}
(ii) C = {x : n ∈ N, x = \(\frac{n}{n + 1}\) }
(iii) D = {x : x ∈ set of all Tamil months in a year}
(iv) E = {x : x is an odd whole number and x < 9}

Samacheer Kalvi 9th Maths Guide Chapter 1 Set Language Ex 1.1

Question 6.
Represent the following sets in descriptive form.
(i) P = { January, June, July}
(ii) Q = {7, 11, 13, 17, 19, 23, 29}
(iii) R = {x : x∈N, x < 5}
(iv) S = {x : x is a consonant in English alphabets}
Solution:
(i) P = The set of all months beginning with the letter “J”
(ii) Q = The set of all prime numbers between 5 and 31
(iii) R = The set of natural numbers less than 5
(iv) S = The set of consonants in English alphabets

Read More:

ముకుందమాలా

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Students can download Maths Chapter 8 Statistics Ex 8.1 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 8 Statistics Ex 8.1

Question 1.
In a week, temperature of a certain place is measured during winter are as follows 26°C, 24°C, 28°C, 31°C, 30°C, 26°C, 24°C. Find the mean temperature of the week.
Solution:
Mean temperature of the week
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 1
= 27°C
Mean temperature of the week 27° C

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 2.
The mean weight of 4 members of a family is 60 kg. Three of them have the weight 56 kg, 68 kg and 72 kg respectively. Find the weight of the fourth member.
Solution:
Weight of 4 members = 4 × 60 kg
= 240 kg
Weight of three members = 56 kg + 68 kg + 72 kg
= 196 kg
Weight of the fourth member = 240 kg – 196 kg
= 44 kg

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 3.
In a class test in mathematics, 10 students scored 75 marks, 12 students scored 60 marks, 8 students scored 40 marks and 3 students scored 30 marks. Find the mean of their score.
Solution:
Total marks of 10 students = 10 × 75 = 750
Total marks of 12 students = 12 × 60 = 720
Total marks of 8 students = 8 × 40 = 320
Total marks of 3 students = 3 × 30 = 90
Total marks of (10 + 12 + 8 + 3) 33 students
= 750 + 720 + 320 + 90
= 1880
Mean of marks = \(\frac{1880}{33}\)
= 56.97 (or) 57 approximately
Aliter:
Total number of students = 10+12 + 8 + 3
= 33
Mean of their marks
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 2
= 56.97 (or) 57 approximately

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 4.
In a research laboratory scientists treated 6 mice with lung cancer using natural medicine. Ten days later, they measured the volume of the tumor in each mouse and given the results in the table.
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 3
find the mean.
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 4
\(\bar { x }\) = \(\frac{Σfx}{Σf}\)
= \(\frac{2966}{21}\)
= 141.238
= 141.24
The Arithmetic mean = 141.24 mm³

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 5.
If the mean of the following data is 20.2, then find the value of p.
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 5
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 6
\(\bar { x }\) = \(\frac{Σfx}{Σf}\)
20.2 = \(\frac{610+20p}{30+p}\)
610 + 20 p = 20.2 (30 + p)
610 + 20 p = 606 + 20.2 p
610 – 606 = 20.2 p – 20 p
4 = 0.2 p
p = \(\frac{4}{0.2}\)
= \(\frac{4×10}{2}\)
= 20
The value of p = 20

Question 6.
In the class, weight of students is measured for the class records. Calculate mean weight of the class students using direct method.
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 7
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 8
Arithmetic mean \(\bar { x }\) = \(\frac{Σfx}{Σf}\)
= \(\frac{2010}{50}\)
= 40.2
Arithmetic mean = 40.2

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 7.
Calculate the mean of the following distribution using Assumed Mean Method.
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 9
Solution:
Assumed Mean (A) = 25
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 10
Arithmetic mean (\(\bar { x }\)) = A+\(\frac{Σfd}{Σf}\)
= 25 + \(\frac{270}{63}\)
= 25 + 4. 29
Assumed Mean = 29.29

Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1

Question 8.
Find the Arithmetic Mean of the following data using Step Deviation Method:
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 11
Solution:
Assumed Mean (A) = 32
Samacheer Kalvi 9th Maths Guide Chapter 8 Statistics Ex 8.1 12
Arithmetic mean = A+\(\frac{Σfd}{Σf}\) × c
= 32 + (\(\frac{-77.5}{105}\)×4)
= 32 – 2.95
= 29.05
Arithmetic mean = 29.05

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Students can download Maths Chapter 7 Mensuration Additional Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Additional Questions

I. Choose the Correct Answer

Question 1.
If the sides of a triangles are 5 cm, 6 cm and 7 cm then the area is ……..
(a) 18 cm²
(b) 6 √2 cm²
(c) 6 √6 cm²
(d) 6 √3 cm²
Solution:
(c) 6 √6 cm²

Question 2.
The perimeter of an equilateral triangle is 60 cm then the area is ………
(a) 60 √3 cm²
(b) 20 √3 cm²
(c) 50 √3 cm²
(d) 100 √3 cm²
Solution:
(d) 100 √3 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 3.
The total surface area of the cuboid with dimension 20 cm × 30 cm × 15 cm is ………
(a) 2700 cm²
(b) 1500 cm²
(c) 2500 cm²
(d) 3000 cm²
Solution:
(a) 2700 cm²

Question 4.
The number of bricks each measuring 70 cm × 80 cm × 40 cm that will be required to build a wall whose dimensions are 7 m × 8 m × 4 m is ……..
(a) 4000
(b) 3000
(c) 2000
(d) 1000
Solution:
(d) 1000

Question 5.
The volume of a cube is 4913 m² then the length of its side is ……..
(a) 13 m
(b) 17 m
(c) 34 m
(d) 27 m
Solution:
(b) 17 m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

II. Answer the Following Questions

Question 6.
A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non parallel sides are 14 m and 13 m. Find the area of the field.
Solution:
The non parallel sides are 13 m and 14 m. Draw BE || AD. Such that BE = 13 m
∴ ABED is a parallelogram
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 1
To find Area of a ΔBCE
a = 13 m, b = 15 m and c = 14 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{13+15+14}{2}\)
= \(\frac{42}{2}\)
= 21 m
s – a = 21 – 13 = 8 m
s – b = 21 – 15 = 6 m
s – c = 21 – 14 = 7 m
Area of a ΔBCE
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 2
= 2² × 3 × 7
= 84 m²
Let the height of the triangle BF be x
Area of the ΔBEC = 84 m²
= \(\frac{1}{2}\) × b × h = 84
= \(\frac{1}{2}\) × 15 × h = 84
x = \(\frac{84×2}{15}\)
= \(\frac{56}{5}\) m
= 11.2 m
Area of parallelogram ABED = base × height sq. units
= 10 × 11.2 m²
= 112 m²
∴ Area of the field = Area of ΔBCE + Area of parallelogram ABED
= 84 m² + 112 m²
= 196 m²
(OR)
Area of the field = Area of the trapezium ABCD
= \(\frac{1}{2}\) h (a + b)
= \(\frac{1}{2}\) × 11.2 (25 + 10)
= \(\frac{1}{2}\) × 11.2 (35)
= 196 m²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 7.
Find the area of a quadrilateral ABCD in which AB = 8 cm, BC = 6 cm, CD = 8 cm, DA = 10 cm and AC = 10 cm and ⌊B = 90°.
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 3
In ΔABC, ⌊B = 90°
∴ ABC is a right angle triangle
Area of the right ΔABC = \(\frac{1}{2}\) × AB × BC sq.units
= \(\frac{1}{2}\) × 8 × 6 cm²
= 24 cm²
In ΔACD a = 10 cm, b = 8 cm and c = 10 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{10+8+10}{2}\)
= \(\frac{28}{2}\)
= 14 cm
s – a = 14 – 10 = 4 cm
s – b = 14 – 8 = 6 cm
s – c = 14 – 10 = 4 cm
Area of ΔACD = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{14×4×6×4}\)
= \(\sqrt{2×7×4×2×3×4}\)
= 4 × 2 \(\sqrt{21}\) cm²
= 8\(\sqrt{21}\) cm²
= 8 × 4.58
= 36.64 cm²
Area of the quadrilateral ABCD
= Area of ΔABC + Area of ΔACD
= 24 cm² + 36.64 cm²
= 60.64 cm²
Area of the quadrilateral = 60.64 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 8.
The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of Rs 7.50 per m².
Solution:
Length of the room (l) = 5 m
Breadth of the room (b) = 4 m
Height of the room (h) = 3 m
Area for white washing = Lateral surface area of four walls + Area of the ceiling
= 2(l + b) × h + (l × b)
= 2(5 + 4) × 3 + (5 × 4) m²
= (2 × 9 × 3 + 20) m²
= (54 + 20) m²
= 74 m²
Cost of white washing for one m² = Rs 7.50
Cost of white washing for 74 m² = Rs 74 × 7.50
= Rs 555
The required cost = Rs 555

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 9.
How many hollow blocks of size 30 cm × 15 cm × 20 cm are needed to construct a wall 60 m in length 0.3 m in breadth and 2 m in height.
Solution:
Length of a wall = 60 m = 6000 cm
Breadth of a wall = 0.3 m = 30 cm
Height of a wall = 2 m = 200 cm
Volume of the wall = l × b × h sq. unit
= 6000 × 30 × 200 cm³
For hollow block
l = 30 cm, b = 15 cm, h = 20 cm
Volume of one hollow block = l × b × h
= 30 × 15 × 20 cm²
Number of hollow blocks required
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 4
= 4000
∴ Number of bricks = 4000

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 10.
Find the number of cubes of side 3 cm that can be cut from a cuboid of dimensions 10 cm × 9 cm × 6 cm.
Solution:
Side of a cube = 3 cm
Volume of a cube = a³ cm
= 3 × 3 × 3 cm³
Length of the cuboid (l) = 10 cm
Breadth of the cuboid (b) = 9 cm
Height of the cuboid (h) = 6 cm
Volume of the cuboid = l × b × h cu. unit
= 10 × 9 × 6 cm
Number of cubes
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 5
∴ Number of cubes = 20

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Students can download Maths Chapter 6 Trigonometry Additional Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 6 Trigonometry Additional Questions

I. Choose the Correct Answer

Question 1.
The value of cosec² 60 – 1 is equal to ……..
(a) cos² 60
(b) cot² 60
(c) sec² 60
(d) tan² 60
Solution:
(b) cot² 60

Question 2.
The value of cos 60° cos 30° – sin 60° sin 30° is equal is ……..
(a) cosec 90°
(b) tan 90°
(c) sin 30° + cos 30°
(d) cos 90°
Solution:
(d) cos 90°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 3.
The value of \(\frac{sin 57°}{cos 33°}\) is …….
(a) cot 63°
(b) tan 27°
(c) 1
(d) 0
Solution:
(c) 1

Question 4.
If 3 cosec 36° = sec 54° then the value of x is ……..
(a) 0
(b) 1
(c) \(\frac{1}{3}\)
(d) \(\frac{3}{4}\)
Solution:
(c) \(\frac{1}{3}\)

Question 5.
If cos A cos 30° = \(\frac{√3}{4}\), then the measures of A is ……..
(a) 90°
(b) 60°
(c) 45°
(d) 30°
Solution:
(b) 60°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

II. Answer the Following Question

Question 1.
Given Sec θ = \(\frac{13}{12}\). Calculate all other trigonometric ratios.
Solution:
In the right triangle ABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 1
BC² = AC² – AB²
= 13² – 12²
= 169 – 144
= 25
∴ BC = \(\sqrt{25}\)
= 5
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 2

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 2.
If 3 cot A = 4 check weather \(\frac{1- tan²A}{1+ tan²A}\) = cos² A – sin² A or not?
Solution:
3 cot A = 4
cot A = \(\frac{4}{3}\)
In the right ΔABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 3
AC² = AB² + BC²
= 4² + 3²
= 16 + 9
= 25
= \(\sqrt{25}\)
= 5
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 4
Hence \(\frac{1- tan²A}{1+ tan²A}\) = cos² A – sin² A
R.H.S = cos² A – sin² A
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 5
L.H.S = R.H.S

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 3.
Evaluate \(\frac{sin 30° + tan 45° – cosec 60°}{sec 30° + cos 60° + cot 45°}\)
Solution:
sin 30° = \(\frac{1}{2}\); tan 45° = 1; cosec 60° = \(\frac{2}{√3}\); sec 30° = \(\frac{2}{√3}\); cos 60° = \(\frac{1}{2}\); cot 45° = 1
\(\frac{sin 30° + tan 45° – cosec 60°}{sec 30° + cos 60° + cot 45°}\)
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 6
The value is \(\frac{43-24√3}{11}\)

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 4.
Find A if sin 20° tan A sec 70° = √3
Solution:
sin 20° . tan A . sec 70° = √3
sin 20° . sec 70° . tan A = √3
sin (90° – 70°). sec 70° . tan A = √3
cos 70° × latex]\frac{1}{cos 70°}[/latex] tan A = √3
tan A = √3
tan A = tan 60°
∴ ∠A = 60°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 5.
Find the area of the right triangle with hypotenuse 8 cm and one of the acute angles is 57°
Solution:
In the ΔABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 7
sin C = \(\frac{AB}{AC}\)
Sin 57° = \(\frac{AB}{8}\)
0.8387 = \(\frac{AB}{8}\)
∴ AB = 0.8387 × 8
= 0.71 cm
In the ΔABC
cos C = \(\frac{BC}{AC}\)
cos 57° = \(\frac{BC}{8}\)
0.5446 = \(\frac{BC}{8}\)
BC = 0.5446 × 8
= 4.36
Area of the right ΔABC
= \(\frac{1}{2}\) × AB × BC sq. units
= \(\frac{1}{2}\) × 6.71 × 4.36 cm²
= 14.62 cm²
Area of the Δ = 14.62 cm²

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Students can download Maths Chapter 7 Mensuration Ex 7.4 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Ex 7.4

Question 1.
The semi-perimeter of a triangle having sides 15 cm, 20 cm and 25 cm is ……..
(a) 60 cm
(b) 45 cm
(c) 30 cm
(d) 15 cm
Solution:
(c) 30 cm
Hint:
l = 15 cm, b = 20 cm, h = 25 cm
Semi-perimeter = \(\frac{a+b+c}{2}\)
= \(\frac{15+20+25}{2}\)
= 30 cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 2.
If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is ………
(a) 3 cm²
(b) 6 cm²
(c) 9 cm²
(d) 12 cm²
Solution:
(b) 6 cm²
Hint:
a- 3 cm, b = 4 cm, c = 5 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{3+4+5}{2}\)
= 6 cm
Area of the triangle = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{6×3×2×1}\)
= \(\sqrt{36}\)
= 6 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 3.
The perimeter of an equilateral triangle is 30 cm. The area is ……..
(a) 10 √3 cm²
(b) 12 √3 cm²
(c) 15 √3 cm²
(d) 25 √3 cm²
Solution:
(d) 25 √3 cm²
Hint:
Perimeter of an equilateral triangle = 30 cm
3a = 30 cm
a = \(\frac{30}{3}\)
= 10 cm
Area of an equilateral triangle = \(\frac{√3}{4}\) a² sq.units
= \(\frac{√3}{4}\) × 10 × 10
= 25 √3 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 4.
The lateral surface area of a cube of side 12 cm is ……..
(a) 144 cm²
(b) 196 cm²
(c) 576 cm²
(d) 664 cm²
Solution:
(c) 576 cm²
Hint:
Side of a cube (a) = 12 cm
L.S.A. of a cube = 4a² sq.units
= 4 × 12 × 12 cm²
= 576 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 5.
If the lateral surface area of a cube is 600 cm², then the total surface area is ………
(a) 150 cm²
(b) 400 cm²
(c) 900 cm²
(d) 1350 cm²
Solution:
(c) 900 cm²
Hint:
L.S.A. of a cube = 600 cm²
4a² = 600
a² = \(\frac{600}{4}\)
= 150
Total surface area of a cube = 6a² sq.units
= 6 × 150 cm²
= 900 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 6.
The total surface area of a cuboid with dimension 10 cm × 6 cm × 5 cm is ………
(a) 280 cm²
(b) 300 cm²
(c) 360 cm²
(d) 600 cm²
Solution:
(a) 280 cm²
Hint:
T.S.A. of a cuboid = 2(lb + bh + lh) sq.units
= 2(10 × 6 + 6 × 5 + 10 × 5) cm²
= 2(60 + 30 + 50) cm²
= 2 × 140 cm²
= 280 cm²

Question 7.
If the ratio of the sides of two cubes are 2 : 3, then ratio of their surface areas will be ………
(a) 4 : 6
(b) 4 : 9
(c) 6 : 9
(d) 16 : 36
Solution:
(b) 4 : 9
Hint:
Ratio of the surface area of cubes = 4a12 : 4a22
= a12 : a22
= 4² : 9²
= 4 : 9

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 8.
The volume of a cuboid is 660 cm and the area of the base is 33 cm². Its height is ………
(a) 10 cm
(b) 12 cm
(c) 20 cm
(d) 22 cm
Solution:
(c) 20 cm
Hint:
Volume of a cuboid = 660 cm³
l × b × h = 660
33 × h = 660 (Area of the base = l × b)
h = \(\frac{660}{33}\)
= 20 cm

Question 9.
The capacity of a water tank of dimensions 10 m × 5 m × 1.5 m is ………
(a) 75 litres
(b) 750 litres
(c) 7500 litres
(d) 75000 litres
Solution:
(d) 75000 litres
Hint:
The capacity of a tank = l × b × h cu.units
= (10 × 5 × 1.5) m³
= 75 m³
= 75 × 1000 litres [1m³ = 1000 lit]
= 75000 litres

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 10.
The number of bricks each measuring 50 cm × 30 cm × 20 cm that will be required to build a wall whose dimensions are 5 m x 3 m x 2 m is ………
Solution:
(a) 1000
(b) 2000
(c) 3000
(d) 5000
Solution:
(a) 1000
Hint:
Volume of one brick = 50 × 30 × 20 cm³
Volume of the wall = l × b × h
[l = 5m = 500 cm]
[b = 3m = 300 cm]
[h = 2m = 200 cm]
= 500 × 300 × 200 cm³
No. of bricks
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4 1
= 10 × 10 × 10
= 1000 bricks

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Students can download Maths Chapter 7 Mensuration Ex 7.3 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Ex 7.3

Question 1.
Find the volume of a cuboid whose dimensions are
(i) length = 12 cm, breadth = 8 cm, height = 6 cm
(ii) length = 60 m, breadth = 25 m, height = 1.5 m
Solution:
(i) Here l = 12 cm, b = 8 cm, h = 6 cm
Volume of a cuboid = l × b × h
= (12 × 8 × 6) cm³
= 576 cm³

(ii) Here l = 60 m, b = 25 m. h = 1.5 m
Volume of a cuboid = l × b × h
= 60 × 25 × 1.5 m³
= 2250 m³

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 2.
The dimensions of a match box are 6 cm × 3.5 cm × 2.5 cm. Find the volume of a packet containing 12 such match boxes.
Solution:
Length of a match box (l) = 6 cm
Breadth of a match box (b) = 3.5 cm
Height of a match box (h) = 2.5 cm
Volume of one match box = l × b × h cu. units
= 6 × 3.5 × 2.5 cm³
= 52.5 cm³
Volume of 12 match box = 12 × 52.5 cm³
= 630 cm³

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 3.
The length, breadth and height of a chocolate box are in the ratio 5 : 4 : 3. If its volume is 7500 cm³, then find its dimensions.
Solution:
Let the length of a chocolate be 5x, the breadth of a chocolate be 4x, and the height of a chocolate be 3x.
Volume of a chocolate = 7500 cm³
l × b × h = 7500
5x × 4x × 3x = 7500
5 × 4 × 3 × x³ = 7500
x³ = \(\frac{7500}{5×4×3}\)
x³ = 125 ⇒ x³ = 5³
x = 5
∴ Length of a chocolate = 5 × 5 = 25 cm
Breath of a chocolate = 4 × 5 = 20 cm
Height of a chocolate = 3 × 5 = 15 cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 4.
The length, breadth and depth of a pond are 20.5 m, 16 m and 8 m respectively. Find the capacity of the pond in litres.
Solution:
Length of a pond (l) = 20.5 m
Breadth of a pond (b) = 16 m
Depth of a pond (h) = 8 m
Volume of the pond = l × b × h cu.units
= 20.5 × 16 × 8 m³
= 2624 m³ (1 cu. m = 1000 lit)
= (2624 × 1000) litres
= 2624000 lit

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 5.
The dimensions of a brick are 24 cm × 12 cm × 8 cm. How many such bricks will be required to build a wall of 20 m length, 48 cm breadth and 6 m height?
Solution:
Length of a brick (l) = 24 cm
Breadth of a brick (b) = 12 cm
Depth of a brick (h) = 8 cm
Volume of a brick = lbh cu.units
Volume of one brick = 24 × 12 × 8 cm³
Length of a wall (l) = 20 m = 2000 cm
Breadth of a wall (b) = 48 cm
Height of a wall (h) = 6 m = 600 cm
Volume of a wall = l × b × h cu. units
= 2000 × 48 × 600 cm³
Number of bricks
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3 1
= 500 × 50 ( ÷ by 4)
= 25000 bricks
∴ Number of bricks = 25000

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 6.
The volume of a container is 1440 m³. The length and breadth of the container are 15 m and 8 m respectively. Find its height.
Solution:
Let the height of the container be “h”
Length of the container (l) = 15 m
Breadth of the container (b) = 8 m
Volume of the container = 1440 m³
l × b × h = 1440
15 × 8 × h = 1440
h = \(\frac{1440}{15×8}\)
= 12 m
∴ Height of the container = 12 m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 7.
Find the volume of a cube each of whose side is
(i) 5 cm
(ii) 3.5 m
(iii) 21 cm
Solution:
(i) Side of a cube (a) = 5 cm
Volume of a cube = a³ cu. units
= 5 × 5 × 5 cm³
= 125 cm³

(ii) Side of a cube (a) = 3.5 m a³ cu. units
Volume of a cube = 3.5 × 3.5 × 3.5 m³
= 42.875 m³

(iii) Side of a cube (a) = 21 cm
Volume of a cube = a³ cu. units
= 21 × 21 × 21 cm³
= 9261 cm³

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 8.
A cubical milk tank can hold 125000 litres of milk. Find the length of its side in metres.
Solution:
Volume of the cubical tank = 125000 liters
= \(\frac{125}{1000}\) m³ (1 cu.m = 1000 lit)
= 125 m³
a³ = 125 ⇒ a³ = 5³
a = 5
Side of a cube = 5 m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.3

Question 9.
A metallic cube with side 15 cm is melted and formed into a cuboid. If the length and height of the cuboid is 25 cm and 9 cm respectively then find the breadth of the cuboid.
Solution:
Side of a cube (a) = 15 cm
Length of a cuboid (l) = 25 cm
Height of a cuboid (h) = 9 cm
Volume of the cuboid = Volume of the cube
l × b × h = a³
25 × b × 9 = 15 × 15 × 15
b = \(\frac{15 × 15 × 15}{25 × 9}\)
= 15 cm
Breadth of the cuboid = 15 cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Students can download Maths Chapter 7 Mensuration Ex 7.2 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Ex 7.2

Question 1.
Find the Total Surface Area and the Lateral Surface Area of a cuboid whose dimensions are length = 20 cm, breadth = 15 cm, height = 8 cm.
Solution:
Here l = 20 cm, b = 15 cm, h = 8 cm
L.S.A. of the cuboid = 2(1 + b)h sq.m
= 2(20 + 15) × 8
= 2 × 35 × 8
= 560 sq.m
Total surface area of the cuboid = 2(lb + bh + lh) sq.units
= 2(20 × 15 + 15 × 8 + 8 × 20) sq. cm
= 2(300 + 120 + 160) sq. cm
= 2 × 580 sq. cm
= 1160 sq. cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 2.
The dimensions of a cuboidal box are 6 m x 400 cm x 1.5 m. Find the cost of painting its entire outer surface at the rate of Rs 22 per m².
Solution:
Length of the cuboid box (l) = 6 m
Breadth of the cuboid box (b) = 400 cm = 4m
Height of the cuboid box (h) = 1.5 m
T.S.A. of the cuboid = 2(lb + bh + lh) sq.units
= 2(6 × 4 + 4 × 1.5 + 1.5 × 6) sq.units
= 2(24 + 6 + 9)
= 2 × 39 sq.m
= 78 sq.m
Cost of painting for one sq.m = Rs 22
Total cost of painting = Rs 78 × 22
= Rs 1716

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 3.
The dimensions of a hall is 10 m × 9 m × 8 m. Find the cost of white washing the walls and ceiling at the rate of Rs 8.50 per m².
Solution:
Length of the hall (l) = 10 m
Breath of the hall (b) = 9 m
Height of the hall (h) = 8 m
Area to be white wash = L.S.A. + Ceiling of the building
= 2(l + b)h + lb sq.units
= 2(10 + 9)8 + 10 × 9 sq.m
= 2 × 19 × 8 + 10 × 9 sq. m
= (304 + 90) sq.m
= 394 sq.m
Cost of white washing one sq.m = Rs 8.50
Cost of white washing for 394 sq.m = Rs 394 × 8.50
= Rs 3349
Total cost of white washing = Rs 3349

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 4.
Find the TSA and LSA of the cube whose side is
(i) 8 m
(ii) 21 cm
(iii) 7.5 cm
Solution:
(i) 8m
Side of a cube (a) = 8m
T.S.A. of the cube = 6a² sq.units
= 6 × 8 × 8 sq. m
= 384 sq.m
L.S.A. of the cube = 4a² sq.units
= 4 × 8 × 8 sq.m
= 256 sq.m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

(ii) 21 cm
Solution:
Side of a cube (a) = 21 cm
T.S.A. of the cube = 6a² sq. units
= 6 × 21 × 21 cm²
= 2646 cm²
L.S.A. of the cube = 4a² sq.units
= 4 × 21 × 21 sq.cm
= 4 × 441 cm²
= 1764 cm²

(iii) 7.5 cm
Solution:
Side of a cube (a) = 7.5 cm
T.S.A. of the cube = 6a² sq.units
= 6 × 7.5 × 7.5 cm²
= 337.5 cm²
L.S.A. of the cube = 4a² sq.units
= 4 × 7.5 × 7.5 sq.cm
= 225 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 5.
If the total surface area of a cube is 2400 cm² then, find its lateral surface area.
Solution:
T.S.A. of the cube = 2400 cm²
6a² = 2400
a² = \(\frac{2400}{6}\)
= 400 cm²
L.S.A. of the cube = 4a² sq.units
= 4 × 400 cm²
= 1600 cm²
(OR)
T.S.A. of the cube = 2400 cm²
6a² = 2400
a² = \(\frac{2400}{6}\)
= 400
a = \(\sqrt{400}\)
= 20 cm
Side of a cube (a) = 20 cm
L.S.A. of the cube = 4a² sq.units
= 4 × 20 × 20 cm²
= 1600 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 6.
A cubical container of side 6.5 m is to be painted on the entire outer surface. Find the area to be painted and the total cost of painting it at the rate of Rs 24 per m².
Solution:
Side of a cube (a) = 6.5 m
Total surface area of the cube = 6a² sq.units
= 6 × 6.5 × 6.5 sq.m
= 253.50 sq.m
Cost of painting for 1 sq.m = Rs 24
Cost of painting for 253.5 sq.m = 253.5 × 24
= Rs 6084
∴ Area to be painted = 253.50 m²
Total cost of painting = Rs 6084

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.2

Question 7.
Three identical cubes of side 4 cm are joined end to end. Find the total surface area and lateral surface area of the new resulting cuboid.
Solution:
Joint the three identical cubes we get a new cuboid
Length of the cuboid (l) = (4 + 4 + 4) cm
l = 12 cm
Breadth of the cuboid (b) = 4 cm
Height of the cuboid (h) = 4 cm
Total surface area of the new cuboid = 2(lb + bh + lh) sq.units
= 2(12 × 4 + 4 × 4 + 4 × 12)
= 2(48 + 16 + 48) cm
= 2(112) cm²
= 224 cm²
Lateral surface area of the new cuboid = 2(l + b)h sq.units
= 2(12 + 4)4 cm²
= 2 × 16 × 4 cm²
= 128 cm²
∴ T.S.A of the new cuboid = 224 cm²
L.S.A of the new cuboid = 128 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Students can download Maths Chapter 7 Mensuration Ex 7.1 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Ex 7.1

Question 1.
Using Heron’s formula, find the area of a triangle whose sides are
(i) 10 cm, 24 cm, 26 cm
Solution:
Let a = 10 cm, b = 24 cm and c = 26 cm
s = \(\frac{a + b + c}{2}\)
= \(\frac{10 + 24 + 26}{2}\)
s = \(\frac{60}{2}\)
= 30 cm
s – a = 30 – 10 = 20 cm
s – b = 30 – 24 = 6 cm
s – c = 30 – 26 = 4 cm
Area of a triangle
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 1
= 2³ × 3 × 5
= 8 × 3 × 5
= 120 cm²
Area of a triangle = 120 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

(ii) 1.8 m, 8 m, 8.2 m
Solution:
Here a = 1.8 m, b = 8 m, c = 8.2 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{(1.8+8+8.2)m}{2}\)
= \(\frac{18}{2}\)
= 9 m
s – a = 9 – 1.8 = 7.2 m
s – b = 9 – 8 = 1 m
s – c = 9 – 8.2 m = 0.8 m
Area of triangle
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 2
= 3 × 2.4
= 7.2 m²
∴ Area of the triangle = 7.2 sq. m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 2.
The sides of the triangular ground are 22 m, 120 m and 122 m. Find the area and cost of levelling the ground at the rate of Rs 20 per m².
Solution:
The sides of the triangular ground are 22m, 120m and 122 m
a = 22 m, b = 120 m, c = 122 m
s = \(\frac{a+b+c}{2}\)
\(\frac{22+120+122}{2}\)m
= 132
s – a = 132 – 22 = 110 m
s – b = 132 – 120 = 12 m
s – c = 132 – 122 = 10 m
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 3
= 4 × 3 × 10 × 11
= 1320 sq.m
Cost of levelling for one sq.m = Rs 20
Cost of levelling the ground = Rs 1320 × 20
= Rs 26400
Area of the ground = Rs 1320 sq.m
Cost of levelling the ground = Rs 26400

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 3.
The perimeter of a triangular plot is 600 m. If the sides are in the ratio 5 : 12 : 13, then find the area of the plot.
Solution:
Let the side of the triangle a, b and c be 5x, 12x and 13x
Perimeter of a triangular plot = 600 m
5x + 12x + 13x = 600
30x = 600 ⇒ x = \(\frac{600}{30}\)
x = 20
a = 5x = 5 × 20 = 100 m
b = 12x = 12 × 20 = 240 m
c = 13x = 13 × 20 = 260 m
s = \(\frac{600}{2}\)
= 300 m
s – a = 300 – 100 = 200 m
s – b = 300 – 240 = 60 m
s – c = 300 – 260 = 40 m
Area of triangle
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 4
= 10³ × 3 × 2 × 2 m²
= 1000 × 12 m²
= 12000 m²
Area of the triangular Plot = 12000 sq.m

Question 4.
Find the area of an equilateral triangle whose perimeter is 180 cm.
Solution:
Perimeter of an equilateral triangle = 180 cm
3a = 180
a = \(\frac{180}{3}\)
= 60 m
Area of an equilateral triangle
= \(\frac{√3}{4}\) a² sq.unit
= \(\frac{√3}{4}\) × 60 × 60 sq.m
= √3 × 15 × 60 sq.m
= 1.732 × 15 × 60 sq.m
= 1558.8 sq.m
Area of an equilateral triangle = 1558.8 sq.m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 5.
An advertisement board is in the form of an isosceles triangle with perimeter 36 m and each of the equal sides are 13 m. Find the cost of painting it at Rs 17.50 per square metre.
Solution:
Equal sides of a triangle = 13m
Perimeter of an isosceles triangle = 36 m
Length of the third side = 36 – (13 + 13) m
= 36 – 26
= 10 m
Here a = 13m, b = 13m and c = 10m
s = \(\frac{a+b+c}{2}\)
= \(\frac{36}{2}\)
= 18 m
s – a = 18 – 13 = 5 m
s – b = 18 – 13 = 5 m
s – c = 18 – 10 = 8 m
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 5
= 2² × 3 × 5
= 60 sq.m
Cost of painting for one sq. m = Rs 17.50
Cost of painting for 60 sq. m = Rs 60 × 17.50
= Rs 1050

Question 6.
Find the area of the unshaded region.
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 6
Solution:
Since ABD is a right angle triangle
AB² = AD² + BD²
= 12² + 16²
= 144 + 256
= 400
AB = \(\sqrt{400}\)
= 20 cm
Area of the right angle triangle = \(\frac{1}{2}\) bh sq.unit
= \(\frac{1}{2}\) × 12 × 16 cm²
= 6 × 16 cm²
= 96 cm²
To find the Area of the triangle ABC
Here a = 42 cm, b = 34 cm, c = 20 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{42+34+20}{2}\) cm
= \(\frac{96}{2}\)
= 48 cm
s – a = 48 – 42 = 6 cm
s – b = 48 – 34 = 14 m
s – c = 48 – 20 = 28 m
Area of triangle
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 7
= 16 × 3 × 7 cm²
= 336 cm²
Area of the unshaded region = Area of the ΔABC – Area of the ΔABD
= (336 – 96) cm²
= 240 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 7.
Find the area of a quadrilateral ABCD whose sides are AB = 13 cm, BC = 12 cm, CD = 9 cm, AD = 14 cm and diagonal BD = 15 cm.
Solution:
In the triangle ABD,
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 8
Let a = 15 cm, b = 14 cm c = 13 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{15+14+13}{2}\) cm
= \(\frac{42}{2}\)
= 21 cm
s – a = 21 – 15 = 6 cm
s – b = 21 – 14 = 7 cm
s – c = 21 – 13 = 8 cm
Area of ΔABD
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 9
= 2² × 3 × 7 3
= 84 cm²
In the ΔBCD,
Let a = 15 cm, b = 9 cm, c = 12 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{15+9+12}{2}\) cm
= \(\frac{36}{2}\)
= 18 cm
s – a = 18 – 15 = 3 cm
s – b = 18 – 9 = 9 cm
s – c = 18 – 12 = 6 cm
Area of the ΔBCD
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 10
= 2 × 3³
= 2 × 27 sq.cm
= 54 sq. cm
Area of the quadrilateral ABCD = Area of ΔABD + Area of ΔBCD
= (84 + 54) sq.cm
= 138 sq.cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 8.
A park is in the shape of a quadrilateral. The sides of the park are 15 m, 20 m, 26 m and 17 m and the angle between the first two sides is a right angle. Find the area of the park.
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 11
In the right angle triangle ABC (Given ⌊B= 90°)
AC² = AB² + BC²
= 15² + 20²
= 225 + 400
AC² = 625
AC = \(\sqrt{225}\)
= 25 m
Area of the right ΔABC = \(\frac{1}{2}\) × AB × BC
= \(\frac{1}{2}\) × 15 × 20 sq.m
= 150 sq.m
In the triangle ACD
a = 25 m b = 17 m, c = 26 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{25+17+26}{2}\) cm
= \(\frac{62}{2}\)
= 34 m
s – a = 34 – 25 = 9 m
s – b = 34 – 17 = 17 m
s – c = 34 – 26 = 8 m
Area of the triangle ACD
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 12
4 × 3 × 17
= 204 sq.m
Area of the quadrilateral = Area of the ΔABC + Area of the ΔACD
= (150 + 204) sq.m
= 354 sq.m
Area of the quadrilateral = 354 sq.m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 9.
A land is in the shape of rhombus. The perimeter of the land is 160 m and one of the diagonal is 48 m. Find the area of the land.
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 13
Perimeter of the rhombus = 160 m
4 × side = 160
Side of a rhombus = \(\frac{160}{4}\)
= 40 m
In ΔABC, a = 40 m, b = 40 m, c = 48 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{40+40+48}{2}\) cm
= \(\frac{128}{2}\)
= 64 m
s – a = 64 – 40 = 24 m
s – b = 64 – 40 = 24 m
s – c = 64 – 48 = 16m
Area of the ΔABC = \(\sqrt{64×24×24×16}\)
= 8 × 24 × 4
= 768 sq.m
Since ABCD is a rhombus Area of two triangles are equal.
Area of the rhombus ABCD = (768 + 768) sq.m
= 1536 sq.m
∴ Area of the land = 1536 sq.m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1

Question 10.
The adjacent sides of a parallelogram measures 34 m, 20 m and the measure of the diagonal is 42 m. Find the area of parallelogram.
Solution:
Since ABCD is a parallelogram opposite sides are equal.
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 14
In the ΔABC
a = 20 m, b = 42 m and c = 34 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{20+42+34}{2}\) cm
= \(\frac{96}{2}\)
= 48 m
s – a = 48 – 20 = 28 m
s – b = 48 – 42 = 6 m
s – c = 48 – 34 = 14 m
Area of the ΔABC
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.1 15
= 24 × 3 × 7 sq.m
= 16 × 3 × 7 sq.m
= 336 sq.m
Since ABCD is a parallelogram
Area of ΔABC and Area of ΔACD are equal
Area of the parallelogram ABCD = (336 + 336) sq.m
= 672 sq.m
∴ Area of the parallelogram = 672 sq.m